
 S.C.R.E.A.M – program documentation 

 1-1 

 

 
 

 
 

 
 

Superconducting Relativistic  
Particle Accelerator Simulation  

 
A program description  

 
P. Bauer1, G.W. Foster, M. Huening 

 
Abstract --- The following note describes a computer code used for the 
simulation of the acceleration of a pulsed beam through a linac 
composed of superconducting cavity resonators. This program was 
developed by M. Huening for the simulation of the longitudinal beam 
dynamics in the Tesla Test Facility (TTF) at DESY. The inner workings 
of the different modules composing the S.C.R.E.A.M program are 
described, including a detailed discussion of the program input, 
commented flowcharts and a detailed documentation of the algorithm. 
The program is now being used for the simulation of the proposed 
Fermilab Proton-Driver. 
 
 
 
 
                                                 
1 pbauer@fnal.gov 

Fermi National Accelerator Laboratory
PO Box 500

Batavia, IL 60510
TD-04-031
May 2005

 



 S.C.R.E.A.M – program documentation 

 1-2 

 
TABLE OF CONTENT 
 
1 SUMMARY 1- 3 
 
2 INTRODUCTION  2- 1 
 
3 INPUT  3- 1 

3.1 Basics           3- 1 
3.2 General Field          3- 1 
3.3 Cavities Field                                                       3- 3 
3.4 PhaseLoop Field         3- 6 
3.5 Bunches Field          3- 6 

 
4 PROGRAM STRUCTURE          4- 1 

4.1 Setting up the Program         4- 1 
4.2 scream.m           4- 2 
4.3 LoadInput.m           4- 5 
4.4 Prerun.m           4- 6 
4.5 acceleration.c            4- 8 
4.6 SimulateField.m          4-13 
4.7 detuning.m                  4-29 
4.8 dimsum.c                   4-31 
4.9 dophaseloop.m          4-33 

 
5 EXAMPLE – FERMILAB PROTON DRIVER        5- 1 

5.1 Fermilab Proton Driver           5- 1 
5.2  S.C.R.E.A.M Input           5- 2 
5.3  PreRun Calculation           5- 8 
5.4  Full Run - One Pulse          5-10 

 
6 APPENDIX A            6- 1 
          
7 APPENDIX B            6- 9 
 
8 APPENDIX C            6-12 
 
 
          



 S.C.R.E.A.M – program documentation 

 1-3 

1 SUMMARY 
 
 

S.C.R.E.A.M is a computer code used for the simulation of the 
longitudinal beam dynamics in a linac composed of superconducting 
cavity resonators. It was developed by M. Huening (DESY) and 
incorporates the operating experience of the Tesla Test Facility (TTF) 
at DESY. It is now being adapted for the simulation of Fermilab’s 
Proton-Driver (PD). 
  

Optimizing the acceleration of a beam through a string of 
accelerating cavities requires careful control of the phases and 
amplitudes of the RF fields in the cavities. This is especially true in low 
beta (β<1) sections of the linac, where the beam velocity changes 
continuously, while the cavity-β changes only in a few discrete steps. 
The RF control system is further complicated in the case in which 
multiple cavities are driven by one klystron. The changing beam 
velocity also results in increased beam loading along the cavity string, 
demanding additional adjustment of the cavity fields. In addition, 
superconducting cavities have a very narrow bandwidth (1 kHz or less) 
and are therefore susceptible to minute deformations of their shape 
caused by microphonics or electromagnetic pressure (“Lorentz-force 
detuning”). These and other effects have to be taken into account in 
the design of the RF control system.  

 
The S.C.R.E.A.M program is a tool to calculate the optimal phase and 

amplitude settings for the superconducting RF cavities in a linac. It 
implements fast RF control techniques such as vector-sum regulation 
feedback and fast ferrite vector-modulators as proposed for the 
Fermilab PD. The program output consists of the beam footprint in 
longitudinal phase-space along the linac. The program also allows 
exploration of the energy (E) and time (t) acceptance of the linac with 
the simulation of the effect of E/t jitter of the incoming beam. This 
program was already used to specify the range and dynamic response 
of the fast ferrite vector-modulators for the Fermilab PD.   
 
This note describes the inner workings of the different modules 
composing the S.C.R.E.A.M program in its current form, which includes 
special adaptations to the Fermilab PD linac. The code is attached to 
this note. Extensive derivations were relegated to the appendix to 
keep the program description compact. Table 1-1 gives the 
nomenclature conventions for this document.  
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Table 1-1: S.C.R.E.A.M nomenclature. 

Parameter Symb Comment 
# of cavities Ncav  
# of RF modules (index) Nm(nm) one RF module can contain several RF cavities 
# of cavities per RF modules Ncm one RF module can contain several RF cavities 
Quality factor  QL loaded 
Quality factor Q0 unloaded 
Cavity beta βc design value 
# of cells Nc in cavity 
Length of cavity cell Lc from cell center to cell center 
Cavity frequency ωRF 2πfRF  
Cavity bandwidth ω12 =ωRF/2/QL, half-width, half-maximum  
Cavity gap factor λ ratio of Lc to RF wave-length (c/fRF), usually 0.5 
Cavity norm shunt impedance r Rsh/Q0, for fundamental (accelerating) mode 
Cavity loaded impedance RL RL=rQL, mostly Rext in over-coupled case 
Linac coordinate z position of cavity (m)  
On axis electric field E(z) (MV/m) 
On axis electric field E

)
 peak-field (MV/m) 

Voltage per cavity (total) Vcav ∫ dzzE )( , real, set-field 

Voltage per cavity (total) V
)

 complex, actual field including phase factor 

Relative voltage  v norm. to 1, used for filling curve, to be multiplied with Vcav 
Beam-loading voltage ∆Vb voltage reduction in cavity due to beam passage 
Forward voltage  Vfwd accel. voltage delivered to cavity from klystron (MV) 
Forward voltage signal  SVfwd voltage signal provided by control system (MV) 
Forward power  Pfwd Power delivered into cavity from klystron (W) 
Feed forward power  Sfwd0 set-table value provided to control system (MV/(Ω)0.5) 
Lorentz-detuning constant KL in Hz/(MV)2, note the unusual units 
Lorentz-detuning constant KL0 in Hz/(MV)2, initial, as defined in input 
Lorentz-detuning spread ∆kL σ of Lorentz detuning const. distribution (relative to KL)  
Lorentz-force-detuning ∆ωLF 2π x (detuning frequency in Hz)   
LF-detuning compensation ∆ωL feed-forward setting to compensate for Lorentz-detuning  
Microphonics-detuning const. Km microphonics detuning const. (in Hz)  
Microphonics-detuning spread σm σ of microphonics detuning const. distribution (in Hz)  
Fast microphonics spread σmf σ of fast microphonics detuning const. distribution (Hz)  
Total detuning ∆ω Lorentzforce and microphonics detuning (rad-Hz) 
Time constant τc cavity (mechanical) time constant for detuning (“ringing”) 
# of time steps Ns Ns=Nfill+Nbeam 
Time step ∆t usually 1 µsec (= bunch spacing) 
Beam-on time tb =pulse time – fill time (sec) 
# of time steps with beam Nb =number of bunches 
Cavity fill time-constant τf fill-time constant (=2QL/ωRF=1/ω12) 
Cavity fill time-constant FTayl fiddle factor to set the non-linearity of filling (∈(0.1)) 
Fill-time tf =pulse time – beam-on time (sec) 
# of steps during fill-time Nf  
Filling delay tfo cavity filling delay with respect to other cavities 
# of particles per bunch N related to average pulse current with Ib∆t/q 
# of macro-particles Nmpb per bunch 
Particle number distribution n normalized fraction of particles contained in each macropart 
Charge of single particle q usually in units of elementary charge 
Mass of single particle m in units of MeV 
Beam current Ib general, bunch charge / bunch spacing (A) 
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Macroparticle current Iini start value (A) 
Macroparticle current I0 start value, before fluctuations (A) 
Beam energy E general particle energy (usually in MeV) 
Beam energy Eini0 start energy offset of synchronous particle (MeV) 
Beam energy Eini start energy of mp (MeV) 
Beam energy E0 start energy of mp relative to bunch centroid (MeV) 
Beam energy Ecoh coherent (fixed during pulse) bunch centroid energy offset  
Beam energy Efluc incoherent (changes bunch to bunch) centroid energy offset 
Beam energy Esync energy of synchronous particle (usually in MeV) 
Arrival energy difference de with respect to synchronous particle (MeV) 
Beam beta βb beam velocity normalized on c  
Beam phase advance φ0 usually negative (~-10° to -20° for protons) (rad) 
Phase difference ∆φ with respect to synchronous phase (rad) 
Transit time factor T’ normalized to 1 
Transit time factor Tsync’ for synchronous particle, normalized to 1 
Time  t general (usually in sec) 
Start time  tini0 start time offset of synchronous particle (sec) 
Start time  tini start time of macroparticle (sec) 
Start time  tcoh coherent (fixed during pulse) bunch centroid time offset 
Start time  tfluc incoherent (fixed during pulse) bunch centroid time offset 
Arrival time  ta In each cavity center (sec) 
Arrival time (synchronous) tsync for synchronous particle, in center of cavity (usually in sec) 
Arrival time difference dt with respect to synchronous particle (sec) 
Injection time sigma σt0 for Gaussian macroparticle distribution in bunch (sec) 
Injection energy sigma σE0 for Gaussian macroparticle distribution in bunch (MeV) 
Injection time sigma σtcoh coherent (same for whole pulse) (MeV) 
Injection time sigma σtfluc incoherent (different from bunch to bunch) (MeV) 
Injection energy sigma σEcoh coherent (same for whole pulse) (MeV) 
Injection energy sigma σEfluc incoherent (different from bunch to bunch) (MeV) 
Injection current sigma σIcoh coherent (same for whole pulse) (MeV) 
Injection current sigma σIfluc incoherent (different from bunch to bunch) (MeV) 
# of branches  Nbranch in macro-particle phase-space 
# of sigmas  Nσ in macro-particle phase-space 
Random number R usually obtained with MATLAB randn function 
# of phase-shifters Ng usually only in the low beta section 
Feedback gain G gain in vector-sum feedback loop (prop) 
Forward power attenuation a attenuation of klystron forward power (relative to 1) 
Vector-modulator correction ∆Vps Complex voltage, to be provided by phase-shifter (MV,rad) 
Phase shift ψ1 phase-shifter branch 1 (rad) 
Phase shift ψ2 phase-shifter branch 2 (rad) 
Phase shift φps total phase shift produced by phase-shifter (rad) 
Vector-modulator atten./shift Aps complex signal from PS (atten rel. to 1), phase (rad) 
Vector-modul. phase offset ψ0 operating point of phase-shifter (rad) 
Vector-modul. reactive power Rps reflection produced by phase-shifter (relative to 1) 
Phase shifter time constant τps dynamic response of phase shifter (sec) 
Phaseshifter proportional gain  GAps amplitude proportional gain (prop) 
Phase shifter differential gain  DAps amplitude differential gain (prop) 
Phaseshifter proportional gain  Gpps phase proportional gain (prop) 
Phase shifter differential gain  Dpps phase differential gain (prop) 
Phase shifter saturation ψsat max phase response of phase shifter (rad) 
Phase-shifter aux. parameter Sps auxiliary parameter (sin(ψ 0) 
Vector-mod reflection gain GR proportional gain of reflected signal (prop) 
# of runs Nruns = # of RF pulses with a new set of  Km for each cavity 
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# of files Nfiles =# of runs with a new set of KL for each cavity 
Auxiliary parameter α βc/βb 

 
A recent publication is recommended as a fast introduction to this 
program2. 
 
Common abreviations: 
 
mp … macro-particle,  
b …. Bunch,  
m … module,  
L … Lorentz,  
0 … bunch-centroid,  
ini … initial,  
sync … synchronous,  
coh … coherent,  
fluc … incoherent,  
cav …. cavity,  
f .. fill,  
fo .. fill-off,  
RF … radio-frequency 
 
Indices: 
 
i….time steps (or bunches) 
j….cavity number 
l….module number 
k…macro-particle 
g…phase-shifter number 
 
Other important conventions: 
 
bunch number=time step 
run=RF pulse, file=series of runs (with different KLj) 
matrix convention (ROWS, COLUMNS), as in MATLAB 
array counting usually starts at 1 
time step cannot easily be changed from 1 micro-sec (hard-coded)! 

                                                 
2 M. Huening et al., “Simulation of RF Control of a Superconducting Linac for Relativistic Particles”, 
Proceedings of the European Particle Accelerator Conference, EPAC 2004, July 2004 Lucerne, Switzerland 
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2 INTRODUCTION 
 

S.C.R.E.A.M is a MATLAB based program that simulates the passage 
of a bunched beam through a linear accelerator made of 
superconducting cavities. It is particularly optimized for the simulation 
of the effects of cavity detuning due to Lorentz-force and microphonics 
as well as beam loading together with the corrective actions taken by 
the RF power system such as vectorsum control and individual cavity 
vector-modulators. It also takes into account jitter of the injected 
beam in energy, arrival-time and current. The major output 
parameters are listed in Table 4-3. The most important are the energy 
and arrival time of each particle in each cavity (and in particular in the 
last cavity). This information can be used to derive the beam footprint 
in longitudinal phase-space at any position in the linac. This is also 
relevant for the estimation of beam loss. Another important output 
consists of the operational parameters of all cavities in the linac as 
function of time. These include the field amplitudes and phases, the 
forward power and vectorsum control signal, the phase-shift and 
attenuation provided by the fast vector-modulators.    
 

Each run in S.C.R.E.A.M calculates the acceleration of one beam 
pulse. Several runs can be simulated in one “file”. The beam pulse (or 
run) contains many bunches. The beam pulse is only one part of the 
RF pulse, which also includes the cavity filling. Obviously the beam is 
launched only once the filling is completed. To limit computing time 
the particles in a bunch are regrouped into macro-particles, which 
have the mass and charge proportional to the sum of the particles 
contained in them but are regarded as single particles during the 
simulation of the acceleration in the linac. The exact number of single 
particles contained in each macro-particle is taken into account when 
the beam loading is calculated. The macro-particles are distributed in 
longitudinal phase-space such as to simulate the distribution of 
particles in a real bunch. Although more granular, the bunches in 
S.C.R.E.A.M occupy more or less the same footprint in phase-space as 
the real bunches. The bunch-charge, bunch-centroid energy and 
arrival time at injection are randomly varied bunch-to-bunch 
(“incoherent”) and pulse-to-pulse (“coherent”) to explore the 
longitudinal acceptance of the linac. The program also provides the 
option to simulate different particle species. 
 
   Once the structure of the linac (= sequence of superconducting 
cavities) is defined in the input file, the program sequentially 
calculates the energy/time profile of the macro-particles along the 
linac. This requires the simulation of the effective accelerating voltage 
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provided by each cavity to each macro-particle. The effective 
accelerating voltage of each cavity is not only determined by the 
particular cavity design field, but also by the phase difference of the 
particle with respect to the cavity RF phase. Furthermore voltage 
attenuation and phase error ensue in the case of detuning of the 
cavity, i.e. the shift of the cavity resonance frequency from the (fixed) 
klystron frequency as a result of minute mechanical deformations 
related to Lorentz-force and micro-phonics.  
 
 Most important is the effect of the mismatch between the cavity 
design beta and the particle velocity. This effect is described by the 
transit time factor. The transit-time-factor describes the reduction of 
the effective acceleration of a particle due to the beta-mismatch 
between the cavity (βc) and the particle (βb), which is especially 
important in long multi-cell cavities. It also includes the effect of the 
sinusoidal variations of the accelerating field in the cavity in time and 
space on the effective acceleration of the beam. It assumes, however, 
that the particle is synchronous, i.e. that its phase is optimal with 
respect to the RF phase.  

 
Then, typically the beam phase in proton linacs is offset by ~-20° 

(the so called phase advance) to obtain gradient (or phase-) focusing 
of the bunch. Gradient focusing consists of accelerating the beam 
ahead of the RF crest so that the slower particles are accelerated more 
than the faster particles. The gradient focusing is more effective the 
heavier the particles and the lower their speed. Finally, the particle 
phase difference due to injection jitter scatters the particle phase 
around the phase advance setting. The phase-factor is also strongly 
affected by detuning and beam loading in the cavities because of the 
ensuing variations of the amplitude and phase of the cavity 
accelerating voltage and thus on the cumulative acceleration history of 
each particle.  

 
Once the corresponding beam phases are calculated, the induced 

field (or beam loading) is subtracted from the cavity field. The re-fill of 
the cavity is simulated assuming constant klystron power. The forward 
power from the klystron to the cavities is adjusted (with feed-forward 
and feedback) such as to keep the cavity voltage and phase constant. 
The feed-forward settings take into account the expected beam 
loading and Lorentz-force detuning. Since RF-modules typically consist 
of several cavities, special techniques are needed to regulate the RF 
power and phase in the individual cavities, which may differ in their 
detuning and beam-loading. At the klystron level the phase and 
amplitude of the RF signal is typically regulated using vector-sum 



 S.C.R.E.A.M – program documentation 

 1-9 

regulation. Vector-sum regulation consists in summing the vectors, 
defined by the phase (direction of vector) and amplitude (length of 
vector) measured in each cavity, to derive the klystron RF phase and 
amplitude setting that produce the desired sum vector. In the Fermilab 
PD it is also proposed that the phase and amplitude in the individual 
cavity be regulated with fast ferrite vector-modulators (or E-H tuners). 
S.C.R.E.A.M is capable of simulating both vector-sum control at the 
module level and individual cavity vector-modulators. 

 
Constant phase offset settings such as the synchronous phase and 

the beam phase advance are programmed into the low level RF system 
that drives the klystron RF phases with respect to the master oscillator 
(and with wave-guide length differences as well as the three-stub 
tuners for the cavity-to-cavity differences within a module). The 
program obviously assumes that the synchronous phase was 
determined and all phases used are therefore with respect to this 
phase. 
 

With a typical time-step of 1µs, a thousand bunches are simulated for 
a typical beam-pulse of 1ms duration. A bunch moving with c travels 
300 m during 1µs. A bunch is therefore usually at the end of the linac 
before the next is launched. The program therefore describes the 
progression of a bunch through the entire linac within one time-step3. 
Obviously the many macro-particles of which the bunch consists are 
also tracked independently through the linac. The cavity field 
calculations (as well as the update of the feedback loops, etc..) are 
performed once per time-step, hence the linac field configuration is 
essentially static during the passage of the bunch. The previous 
bunches affect the actual bunch only through the accumulated beam-
loading voltages.  

 
The program produces a huge amount of data. All the data for the 

first pulse simulated are saved in preresults.mat. For all other Nfiles 
times Nruns pulses, only a subset of the data is stored.  Regarding the 
beam properties, for instance, the program only keeps the final energy 
and phase error of the macro-particles in each bunch. Regarding the 
cavity properties all relevant parameters for each cavity are stored, 
with a point every Downsample time-steps. The data matrices are 
stored in structures, while the matrices for all Nfiles times Nruns 
pulses are stored in structure arrays. The so-called randstate variable 
                                                 
2 In the Fermilab Proton Driver the bunch spacing is much smaller that 1 µsec.  The input into SCREAM 
takes this into account by grouping as many PD bunches into a super-bunch such as to keep the average 
beam current to the design value. This approach is valid for the calculation of beam-loading, for example, 
but would need revision if space-charge effects are to be considered. 
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is also stored for each pulse (run), such that the pseudo-random 
number series needed to define the beam injection jitter, Lorentz-
detuning and microphonics can be recalled for detailed analysis. The 
data arrays are saved in cavresults.mat and beamresults.mat MATLAB 
data files.  

   
  No wake-field effects, space-charge effects as well as intra-beam 

scattering effects between macro-particles or bunches are considered. 
Future additions to the program could include transverse focusing (first 
experiments with a TRACE3D interface were already made) in order to 
calculate the transverse phase space. The simulation of space charge 
effects would certainly be another important contribution. 
 

The program operates in a MATLAB environment. MATLAB is a special 
purpose computer program, optimized to perform scientific 
calculations. It implements MATLAB language and provides a very 
extensive library of pre-defined functions. It is in particular optimized 
for the handling of matrix mathematics. That simplifies the handling 
and plotting of the large amounts of data calculated with a beam-
tracking program of the kind discussed here. The main disadvantage of 
MATLAB is that it is slower than compiled languages, the consequence 
of being an interpreted language. For that reason S.C.R.E.A.M uses C-
language programs in the tracking part of the program. The c-
routines, however, are slowed down by the MATLAB-C data format 
conversion steps required. S.C.R.E.A.M consists of a lose assembly of 
several files, which need to be installed together. S.C.R.E.A.M should 
be launched from the directory where all the Scream files are located. 
These files are listed in Table 4-1. The input file, linac.csv, is not listed 
there. In order to tell the program where to look for the input file, the 
datadirectory variable needs to be set. Per default 
datadirectory=’run0data’, thus it is best to copy linac.csv into the 
folder run0data, which needs to be in the same directory as the 
Scream files. The program is started by typing scream into the 
MATLAB command window, which starts the scream.m script. Before 
calling scream.m, however, the debugging variable, which 
discriminates between the different implementations of the program, 
can be specified. If debugging is not set, the default value of zero is 
assumed and the complete program version is launched. Other 
debugging options are discussed in chapter 4. The input file needs to 
be in the form of a comma-separated list file, which uses MATLAB 
nomenclature to define structure variables ({ }), comments (%), etc. 
The solution chosen here is to save the Excel spreadsheet as a .csv 
type file. The program can be run both in a Unix and Windows 
environment, once the respective versions of MATLAB are installed. 
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3 INPUT 
 

3.1 Basics 
 
The input into S.C.R.E.A.M consists of defining several MATLAB 

structure variables. MATLAB structure variables can contain multiple 
arrays of arbitrary dimensions. In this case the structures contain 
mostly vectors and matrices. The units are usually S.I. with the only 
notable exception that accelerating voltages in the cavities are 
assumed to be in MV and that beam and particle energies are given in 
MeV. That allows the accumulated accelerating voltage to be directly 
translated into beam energy. To cut processing time, as many 
calculations as possible are performed in the input, generated with an 
Excel spreadsheet. The input file is saved as a comma-separated list 
file (csv) in the run0data directory to be read by MATLAB routines. 
Note that MATLAB interprets the ‘%’ as comment delimiter. The 
structure variables defined in the input are called General, Cavities, 
Phaseloop and Bunches. General defines general variables such as 
step-size and the number of output files. Cavities defines the 
properties of all cavities in the linac in the order in which they are 
installed. Phaseloop contains the parameters of the individual cavity 
phase shifters, if there are any. Bunches defines the beam properties, 
such as macro-particle charge and phase-space distribution at the 
start of the linac.  

 
Each beam-pulse contains as many bunches as there are time-steps 

during the beam-on part of the RF pulse (which also includes the filling 
time). The total number of pulses simulated is given by Nfiles x Nruns. 
The separation into two groups of files allows the independent 
variation of different parameters. For instance the set of Lorentz-force 
detuning constants distributed randomly over all cavities is defined 
once for all Nruns within one Nfiles, while the slow/fast micro-phonics 
constants of all cavities are randomly recalculated for every Nruns/Ns.  

 
The input-file, linac.xls, allows initialization and definition of the 

structure variables introduced above. These variables are discussed in 
detail in the following.  
 

3.2 General Field 
 
The General structure variable consists of eleven scalar fields, which 
hold a set of general parameters as listed in Table 3-1. Most of them 
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are parameters describing the jitter of the beam energy, arrival-time 
and current at injection. General provides the half-width sigmas of the 
Gaussian distributions of the bunch centroid (or bunch mean) energy 
(in MeV), starting time (in sec) and current (in %) for each pulse 
(coherent) and for each bunch (incoherent). (Note that, as will be 
discussed in further detail in section 3.5, the particles within the bunch 
are also Gauss-distributed in longitudinal phase-space around the 
centroid.) The half-widths of the Gaussian particle number 
distributions within the bunches are given in the Bunches field. The 
sigmas are multiplied with a MATLAB generated random number (∈(-
1,1)) in subsequent sections of the program to derive the actual bunch 
centroid starting energy, time and charge. To obtain statistical 
significance several runs (= beam pulses) need to be performed for 
each set of input parameters.  
 

A bunch is launched into the linac at every time step during the 
duration of the beam pulse. In a further extension of this principle 
there are in fact two parameters: Nfiles – the number of files - and 
Nruns - the number of RF pulses per file. The separation into Nfiles 
and Nruns allows for the variation of different parameters from one set 
of runs to the next. Currently, for instance, the Lorentz-force detuning 
constant is randomly varied from file to file. The microphonics 
detuning on the other hand, is randomly varied from run(pulse)-to-run 
(slow) or bunch-to-bunch (fast).  

 
The General structure also contains the fast ferrite vector-modulator 

dynamic response time constant, since this number is subject to 
change depending on the ongoing hardware development. 

 
Table 3-1: Fields in the General structure-variable. *added by LoadInput.m during runtime. 

Field Comment typical  
Title string  - 
Efluc σ of distrib. of bunch centroid initial E (incoh.) (scal) 50 keV 
Tfluc σ of distrib. of bunch centroid start time (incoh.) (scal) 5.8 ps 
Ifluc σ of distrib. of total bunch charge (incoh.) (scal) 1% 
Ecoherent σ of distrib. of bunch centroid initial E (coh.) (scal) 50 keV 
Tcoherent σ of distrib. of bunch centroid start time (coh.) (scal) 5.8 ps 
Icoherent σ of distrib. of total bunch charge (coh.) (scal) 1% 
Stepsize time step of calculation, bunch spacing (scal) 1 µs 
Downsample reduction factor for program output time-step (scal) 1 
Filltime fill-time of cavities (applies to all cavities) (scal) 500 µs 
Beamtime duration of beam pulse (scal) 800 µs 
PhaseTau phase-shifter dynamic response time (scal) 150 µs 
Nfiles number of simulations (scal) 1 
Nruns number of runs per simulation  (scal) 1 
doPhaseloop 1 or 0, depending on whether Phaseloop exists or not 1* 
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3.3 Cavities Field 
 

The cavity parameters needed in the simulation are listed in the 
Cavities structure of the input file. The Cavities fields are listed in  

 
Table 3-2: Fields in the Cavities structure-variable. All fields are of dimension (Ncav). *overwritten 
during runtime by Prerun.m. 

Field Comment unit  symb  
CavNo number of cavity - j 
Module number of Module to which the cavity belongs  - nm 
Beta design-beta of the cavity - βc 
Position position of the cavity center along linac (calcul. from n-1 position and 

Neighbour) 
m z 

Neighbour distance between cavity center and center of previous cavity m ∆z 
AmpGen ∫ dzzE )(  as obtained from cavity design codes  MV Vcav 

Amplitude set-amplitude used in calculation, can be different from Ampgen MV Vcav 
Phase beam phase advance (relative to synchronous phase, usually 

negative, set manually) 
deg φ0 

Feedback proportional feedback gain for module, will be overwritten during 
runtime in LoadInput.m with average gain/cavity 

prop. G 

Cells number of cells in cavity - Nc 
GapLambda ratio of cavity cell length / RF wave-length (typically 0.5)  - λ 
Time arrival time of particle in cavity, automatically calculated by program 

when (–1), will be overwritten by Prerun.m with synchronous phase 
s tsync 

Frequency cavity operational frequency  Hz fRF 
QloadedAve external cavity Q for fixed input coupler setting - QL 
Qloaded actual value used in calculation, can be different from QloadedAve - QL 
Attenuation attenuation of forward signal, relative to forward amplitude rel. a 
Rshunt normalized cavity shunt impedance, Rsh/Q0 Ω r 
Microphonics σ of cavity frequency shift (Gaussian) due to slow microphonics Hz σm 
FastMicroph. σ of cavity frequency shift (Gaussian) due to fast microphonics Hz σmf 
Mode e.g. 3.1415 for π-mode (rad) − 
dw feed-forward detuning of cavity to anticipate Lorentzforce detuning, 

= 2πxKL0xVcav2 , will be overwritten during runtime in scream.m 
using the actual KL including the random variation for every Nfiles 

(rad-
Hz) 

∆ωL 

KLorentz Lorentzforce detuning constant, note the unusual units (integation 
over cavity length (division by (LcxNc)2 ) is done in the input) 

Hz/ 
(MV)2 

KL0 

Kspread σ of Gaussian distribution of Lorentz-force detuning constants, 
relative to KLorentz  

(0,1) ∆KL 

FillOff delay of filling start (to allow for faster filling cavities, so that all 
cavities are filled at the end of the fill-time) 

µs tfo 

BeamEnergy energy of synchronous particle (=q⋅Vcav⋅T’’), will be overwritten by 
Prerun.m with E of synchronous particle incl. beam phase advance 

MeV Esync 

BeamBeta beam velocity, relative to c, calculated from BeamEnergy - βb 
TTF transit time factor, will be overwritten by Prerun.m - T’ 
Atten not used (historical), added in LoadInput.m (default=1) rel. - 
FillTau cavity fill-time, added in LoadInput.m if not specified (=2QL/ωRF) sec τf 
FillTaylor fill-curve shape factor, will be added in LoadInput.m (∈0,1) - FTayl 
ReactiveAmp gain of phase shifter reflected amplitude - added in LoadInput.m (=0) - prop 
Reactive gain of phase shifter reflected phase - added in LoadInput.m (=0) - prop 
Egain energy gain of sync. part. in each cavity, will be added in Prerun.m MeV dE 
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Table 3-2. 
 
The Cavities structure essentially contains all the relevant 

information to describe the linac hardware (except for the fast vector-
modulators). In particular it encodes the cavity sequence. It consists 
of 27 vectors with Ncav elements, where Ncav is the number of 
cavities in the linac. The most important parameters are obviously the 
position of each (center of the) cavity, its length, its number of cells, 
the identifier of the RF module to which it belongs, the design 
frequency and beta, the shunt impedance and loaded Q and the 
average accelerating voltage over the cavity at design amplitude as 
well as its detuning characteristics (fast and slow micro-phonics and 
Lorentz-force detuning parameters). The issues related to detuning are 
discussed in detail in chapters 4.2, 4.6 and 4.8. The Cavities structure 
also includes settings, which are part of the amplitude and phase 
control of the cavities. Among them for example the fill delay and the 
(vector-sum) feedback gain (G) and individual cavity directional 
coupler attenuation (a). Finally it also includes some information about 
beam settings, such as the beam phase advance in each cavity, φ0, for 
phase focusing. 
 

The so-called Ampgen parameter is the total accelerating voltage, 
integrated over the length of the cavity as given in Eq. (3-1) for the 
case of a sinusoidal field shape. E

)
 is the on-axis peak electric field in 

(MV/m), Lc the length of a cell and Nc the number of cells per cavity. 
Note that Eq. (3-1) is only an approximation, since it calculates the 
effect of a multi-cell resonator by multiplying the voltage provided in 
one cell by the number of cells Nc. A more accurate calculation can be 
performed with a finite-element code that computes the exact field 
distribution, including drift sections between cells and the reduced 
fields in the end-cells. It also does not apply to cases with non-
sinusoidal spatial field profiles (e.g. pill-box cavities).  

 

( ) ( )MVdz
Lc
zENcdzzENcVcav

LcLc
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⎜
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00 2
1 πcos

)
        (3-1) 

 
The amplitude (Amplitude) that is actually used as the target 

acceleration voltage in the simulation can be different from the design 
amplitude. This can be useful to counteract varying transit time factors 
across a module (by increasing the field where the transit time factor 
is small, for example). 
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The Phase factor allows defining a phase advance of the individual 
cavities. In the particular case of S.C.R.E.A.M it mostly serves to set 
the beam phase advance in each cavity. The phase-advance is 
important for phase focusing, especially at low βb. Note that, as a 
result of the way the model calculates the phase delay of the particles 
in each cavity, the small phase offset due to the finite travel-time from 
cavity to cavity does not need to be included in the phase-offset for 
each cavity provided in the input file. S.C.R.E.A.M automatically 
computes the synchronous phase (see the description of the 
Prerun.m routine). 
 

The proportional feedback (Feedback) is used for the vector-sum 
control feedback. Although the vector has Ncav elements the values in 
the input file are the gains applied to the sum signal in each module. 
This vector is recalculated in LoadInput.m to divide the total gain in 
each module by the number of cavities in each module. After the 
transformation the Feedback vector contains the average gain per 
cavity. This implementation was chosen because the vector-sum gain 
in the low level RF system is of course the gain for the entire module 
(and this is what needs to be given in the input). The feedback gain is 
chosen higher in modules belonging to the low-beta section, because it 
makes the feedback loop more sensitive and gives faster time 
response. The feedback gain is somehow relaxed in the β=1 section. 
Note that cable effects, temperature variations in the electronics and 
noise in the detectors are also amplified with this gain! Also defined is 
the feed-forward power attenuation a (relative to 1) to describe the 
possible attenuation of the directional couplers routing the power to 
the individual cavities. This factors is actually used to set small cavity-
to-cavity variations of the forward power as needed to reduce the 
effects of beam loading variations along the cavities in a module.  The 
TESLA experience has shown that aj~T’-0.25 (where T’ is the normalized  
transit time factor) gives good results. 
 

The Time parameter allows pre-setting of the arrival time (e.g. in 
case delay-loops or damping rings are to be included in the lattice). 
Typically, however, it is set to (-1), which tells the program that the 
arrival time is to be calculated by the program. The arrival time 
calculation is a major part of the acceleration.c routine. Using this 
routine the Prerun.m script calculates the arrival time and energy 
gain of the synchronous particle in each cavity.  
 

The cavity loaded Q (QL) is typically set to a value derived from the 
expected beam loading. The QL actually used in the program can differ 
slightly from the actual loaded Q. In driving the cavity off the optimum 
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coupling condition (and raising the forward power by a similar factor), 
the differences in beam-loading between the cavities in a module can 
be leveled.  

 
The input sheet also calculates the transit-time factor, T’, and the 

beam energy (beam-beta, βb) of the synchronous particle in each 
cavity. This calculation also serves to derive optimized settings of the 
cavity voltage and attenuation as discussed above. The transit time 
factor is discussed in further detail in chapter 4.5 in the context of the 
description of the acceleration.c routine. 

 
The fill-off parameter allows delaying of the filling of faster filling 

cavities, such that all cavities are ready to accept beam at the same 
time. The slowest filling cavities are filled according to the fill-time 
defined in General and have a fill-off of zero. This feature is especially 
important to take into account the change in filling time as a result of 
tuning the QL of the cavities off optimum. The additional parameters 
FillTau (cavity fill time constant, =2QL/ωRF) and FillTaylor (determines 
deviation of fill-curve from linear shape, with 1 giving the linear shape) 
are also used to describe the cavity filling. The FillOff, FillTau and 
FillTaylor vectors are written by the LoadInput.m routine, if they are 
not specified in the input file. The same is true for Atten, ReactiveAmp, 
Reactive and Egain.   
 

Six additional vectors are added by the program (Atten, FillTau, 
FillTaylor, ReactiveAmp, Reactive, Egain). ReactiveAmp and Reactive 
describe the gain of the signal reflected by the fast vector-modulator. 
 
 

3.4 Phase Loop Field 
 

The Phaseloop structure contains information about the fast ferrite 
vector-modulators, a particular hardware component added to some of 
the PD cavities. The fast vector-modulator allows to regulate phase 
and amplitude of the individual cavities in order to provide the 
additional regulation that the vector-sum control loop cannot provide.  
It contains eleven fields, of which only CavNo and the major 
proportional and differential gain factors (for the PID regulator) are 
actually used. All other parameters are currently “hardcoded” and 
cannot be varied individually for the cavities, as it would be the case in 
reality. Table 3-3 summarizes the Phaseloop parameters. CavNo gives 
the identifier of the cavities, which have a phase-shifter. Gain and 
DGain are the proportional and differential gains for the phase-signal 
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in the PID type vector-modulator implementation. AmpGain and 
AmpDGain are the equivalent parameters for the amplitude signal.  

 
The currently used input file also includes fields that can be useful for 

future implementations of the program, but are not used at this point. 
 

Table 3-3: Fields in the Phase-Loop structure-variable. All fields are of dimension (Ng). 

Field Comment unit  symb  
CavNo number of Cavity (renamed to PLIdx later) - j 
Gain proportional gain for phase correction signal prop Gpps 
AmpGain proportional gain for amplitude correction signal prop GAps 
DGain differential gain for phase correction signal prop Dpps 
AmpDGain differential  gain for amplitude correction signal prop DAps 
Atten0 placeholder-not yet used, - - 
PhIni placeholder-not yet used, - - 
KPSnb placeholder-not yet used, - - 
KSlnb placeholder-not yet used, - - 
KBFnb placeholder-not yet used, - - 
KCFnb placeholder-not yet used, - - 

 
 

3.5 Bunches Field 
 

The Bunches field defines the composition (number, charge and 
mass) and the initial phase-space distribution (starting times and 
starting energies as well as current) of the macro-particles in a bunch. 
The mass (in MeV) and charge (in units of elementary charge) of the 
macro-particles is set to the same as that of the single particles, since 
the calculation of the effective acceleration in the cavity just depends 
on the charge to mass ratio. The number of single particles contained 
in the macro-particles, however, is important for the calculation of the 
beam-loading in the cavities. The macro-particle populations obviously 
need to add up to the specified total bunch population, which in turn 
needs to be consistent with the average pulse current of the to be 
simulated beam.  

 
The general phase space distribution of the macro-particles as 

defined in Bunches in its current implementation is shown in Fig. 3-1. 
The Nmpb macro-particles per bunch are distributed in a “star-pattern” 
along Nbranch lines azimuthally spread with the Angle parameter over 
2π (360°/Nbranch angles). The particles are distributed at Nbranch 
(typically 8) discrete angles in the starting time / starting energy plane 
at up to Nσ (typically 9) energy- and time-sigmas, σE0 and σt0. 
Therefore the Bunches vectors typically have (Nbranch×Nσ)+1 
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elements. Eq. (3-2) defines the functions with which the phase space 
coordinates of the macro-particles are calculated. The dashed lines in 
the figure indicate contours of constant sigma. The contours in Fig. 3-1 
were calculated for a Sigma Step of 1 σ. The center point in Fig. 3-1 
corresponds to the synchronous particle, which arrives at time zero at 
the center of the first cavity. This distribution centroid, however, varies 
from case-to-case as discussed in the context of the General input field 
and as will be discussed further below. The header parameters of the 
Bunches structure, Input Time (sec) and Input  Energy (MeV), are the 
coordinates of the synchronous center-point of the particle distribution 
in phase-space (tini0, Eini0). These parameters are essentially the 
constant offsets of the phase-space distribution centroids to which the 
variations defined in the General input field will be added later in the 
program. The Time Sigma (sec) and Energy Sigma (MeV) given in 
Bunches are the half-widths of the Gaussian macro-particle 
distributions in phase space, which are invariable in the program 
(while the centroid is subject to change). The Sigma Step describes 
the number of sigmas, which are to be put between two macro-
particles and thus describes the coarseness of the macro-particle 
distribution in phase-space. Note that the phase-space in Fig. 3-1 is 
given in the most general form, namely in terms of sigmas of the 
energy/arrival-time distributions. The sigmas are then quantified in 
MeV and secs in the header of the Bunches structure. Fig. 3-1 also 
indicates the order in which the macro-particles are defined in Bunches 
(arrows). 

 
The number of particles contained in each macro-particle decreases 

according to a Gaussian function such as shown in Fig. 3-2. The 
macro-particle population is calculated with Eq. (3-3). The macro-
particle current is also derived from the particle number distribution 
(Eq.(3-4)). The input spreadsheet performs the calculation of the 
Gaussian particle number distribution of the macro-particles in phase 
space from the Gaussian mean and width, given in the header of the 
Bunches field with this formalism. This distribution is normalized to 
one and needs to be multiplied with the total number of particles per 
bunch N to obtain the number of particles per macro-particle. The total 
number of particles/bunch is adjusted such as to give the average 
pulse current specified for the to be simulated beam. 
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Table 3-4: Fields in the Bunches structure-variable. The fields in the rows starting with “Angle” 
and below have dimension Nmpb. All other fields are scalars. 

Field Comment unit  symb  
Input Time time offset of mean (centroid) of Gaussian particle 

distribution in all bunches  
sec tini0 

Input Energy energy offset of mean (centroid) of Gaussian particle 
distribution in all bunches 

MeV Eini0 

Time Sigma sigma for time-dimension of Gaussian particle 
distribution  

sec σt0 

Energy Sigma sigma for energy-dimension of Gaussian particle 
distribution  

MeV σE0 

Sigma Step distance betw. macro-particles in relative phase space 
(multiples of σ) 

- - 

Angle angle in initial time / energy phase space for macro-
particle (360°/Nbranch) 

deg - 

Offset number of sigmas from mean (centroid) in Gaussian 
particle number distribution  

- Nσ 

Energy initial energy of macro-particle MeV Eini 
Time arrival time of macro-particle in first cavity sec tini 
Mass rest-mass of particles (to discriminate e- from e.g. H-) MeV MeV 
Charge charge of particles in units of the elementary charge - q 
N number of particles per macro-particle - n 
I “current” of macro-particle (Nq∆t, where ∆t is the 

bunch spacing)  
A I0 
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Note that the lines in Fig. 3-1 fall in between sigmas, namely at 
integer multiples of ∆σ/2. The sigmas refer to the Gaussian particle 
distribution that defines the population of each macro-particle in the 
bunch. The lines in the plot define the areas in phase-space over which 
the Gaussian distribution is integrated to calculate the population of 
each macro-particle. The relative particle number distribution, n(σ), is 
given in Eq. (3-3). Note that the population of the centroid macro-
particle is calculated separately. Also note that the calculations are 
given for a general ∆σ, which does not have to be an integer multiple 
of sigma. The relative number distribution integrates to 1. The nu 
needs to be multiplied with the number of particles per bunch N to 
calculate the total number of particles per macro-particle. Since in the 
real machine there often are several bunches during one time step of 
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S.C.R.E.A.M (1 µsec), the charge needs to be accordingly redistributed 
into bigger, but less frequent bunches for the purpose of the 
simulation. The total number of particles per bunch is calculated from 
the average beam current of the real machine (that is to be simulated) 
and the time-step as given in Eq. (3-4). 
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The calculation in Eq. (3-3) is performed for circles in phase space. 
These circles can be deformed into ellipses through assignment of a 
particular σE0 and σt0 (e.g. 60 keV and 9.9 ps in the proton driver).  

 
The phase space jitter of the bunch centroid at injection as well as the 
fluctuations in bunch current are not calculated in the Bunches field, 
but in the SimulateField.m routine of the program on the basis of the 
statistical distribution widths given in the General field. The program 
uses a random number generator to shift the center-point of the 
distribution a fraction of sigma in starting time, starting energy and 
total bunch current. The pulse-to-pulse (run-to-run) variations of the 
time and energy centroids of the distribution as well as the bunch 
current are calculated with the coherent sigmas. The bunch-to-bunch 
variations of the time and energy centroids of the distribution as well 
as the bunch current are calculated with the fluctuation (incoherent) 
sigmas. The sum of the coherent and incoherent variations are then 
added to the particle energy and time offset defined in Bunches to 
produce the final phase-space centroid of the distribution used in the 
bream tracking calculation. The random number generator function 
parameters are stored with every seed such that the calculations can 
be repeated. More details on this procedure can be found in the 
discussion of SimulateField.m. 



 S.C.R.E.A.M – program documentation 

 3-11

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

Starting  time (number of σ's)

St
ar

tin
g 

en
er

gy
 (n

um
be

r o
f σ

's
) Pre-run

 
Figure 3-1: Initial distribution of macro-particles in longitudinal phase-space. The distribution is in 
number of sigmas of the Gaussian distributions. The rings delimit the phase-space surface area 
allocated for each of the n-sigma zones. Given that the representation is independent of the exact 
energy and time sigma these zones are rings. All bunches in the simulations use this phase-
space distribution, except for coherent variations of all particles. Also shown is the order (starting 
with the center particle) in which the macro-particles are defined in the input file (red arrows).  

1E-17

1E-15

1E-13

1E-11

1E-09
1E-07

1E-05

0.001

0.1

10

0 1 2 3 4 5 6 7 8 9 10
Number of sigmas from centroid

Pa
rt

ic
le

 n
um

be
r d

is
tr

ib
ut

io
n

(r
el

at
iv

e 
to

 1
)

Nrel

 
Figure 3-2: Normalized distribution of number of particles n(σ) per macro-particle as function of 
number of σ from the centroid. Note that the relative particle number of the centroid is calculated 
separately and that the sum of all particles (including the other Nbranch-1 branches) is 1. 



 S.C.R.E.A.M – program documentation 

 4-1

4 PROGRAM STRUCTURE  
 

4.1 Setting up the Program 
 

To execute the program all program-files need to be copied into the 
working directory. Most of them are MATLAB type m-files. The list of 
files is given in Table 4-1. They will be discussed in detail in the 
following. The program is started by calling the main routine (scream) 
in the MATLAB environment (typing scream in the MATLAB 
environment). This launches the scream.m script. Note that first the 
working directory in MATLAB needs to be set to the directory in which 
all files are located. Two of the files (acceleration.c and dimsum.c) 
are in c-code and need to be compiled once in MATLAB before the 
program can run. The compilation, which produces the files, can be 
done with the mex command from the MATLAB environment. 

 
Before calling the scream.m script some program parameters need 

to be set, among them the debugging variable (default: 0) and the 
data-directory variable (default: ’run0data’). The debugging variable 
gives choice between different levels of program execution (see 4.2 for 
more details). The directory string variable datadirectory contains the 
name of the folder, where the input file is located. The input loading 
routine assumes that this folder is in the working directory. The basic 
start-up commands are repeated below. The program will create the 
cavityresults.mat and beamresults.mat datafiles, which contain the 
results. The results of the first (debugging) run are stored in 
preresults.mat. The data can be reloaded with the MATLAB load 
command. 

debugging=0; 
datadirectory=’run0data’; 

scream; 
Table 4-1: Files required for the execution of Scream. Files with extension ‘.m’ are Matlab files. 

Filename Comment 
scream.m main program, executes different versions of program, saves data 
LoadInput.m reads input file linac.csv 
Prerun.m tracks synchronous pilot particle and the “synchronous” bunch   
acceleration.c tracking routine, calculates E(t) for all macroparticles  
SimulateField.m calculates cavity fields including detuning and feedback control of 

amplitude and phase 
detuning.m calculates Lorentzforce detuning due to cavity voltage 
dimsum.c averages (complex) voltages of all cavities for each module for 

vectorsum control 
initiphaseloop.m initializes parameters for fast vector-modulator implementation 
dophaseloop.m simulates the fast vector-modulator 
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4.2 scream.m 
 
Scream.m, albeit short, is in fact the main program, with as its main 

purpose to call other scripts depending on the value of the debugging 
variable, which discriminates between different program versions. If 
debugging is not defined in the MATLAB environment before the 
execution of scream.m, the variable is automatically set to zero. 
Table 4-2 lists the different program options launched according to the 
value of the debugging variable. Most of them consist in calling the 
Prerun.m routine. The Prerun.m routine tracks a so-called pilot 
particle and a pilot bunch through the linac. The pilot particle is 
synchronous and therefore defines the synchronous phase.  

 
Table 4-2: Different program options that can be selected with the debugging parameter. 

debugging action Comment 
0 (default), 

>3 
complete run simulates NfilesxNruns complete RF pulses  

(Nb bunches with Nmpb macro-particles) 
1 pre-run, beam 

only 
simulates the synchronous pilot particle  

and one synchronous bunch 
2 pre-run, beam 

& cavities 
pre-run with one RF pulse, includes simulation of 

cavity fields (incl. feed-back & detuning) 
3 pre-run, beam 

& cav + save 
pre-run with one RF pulse, includes simulation of 

cavity fields, with save (preresults.mat) 

  
 

SCREAM.M

P
R
E
R
U
N

2

3

0

DEBUGGING

LOAD-
INPUT.M

END

SIMULATE

FIELD.M

1

END

ENDSAVE
preresults.

mat

Kf=1….Nfiles

Kr=1…..Nrun

SIMULATE FIELD.M

SAVE
cavresults.mat , beamresults.mat

end

end

Complete run through 
Nfiles x Nrun beam-
pulses. Lorentz-force 
detuning is varied 
randomly between 
files; Cavity 
microphonics are 
varied from run to run.
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R
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N
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DEBUGGING

LOAD-
INPUT.M

END

SIMULATE

FIELD.M

1

END

ENDSAVE
preresults.

mat

Kf=1….Nfiles

Kr=1…..Nrun

SIMULATE FIELD.M

SAVE
cavresults.mat , beamresults.mat

end

end

Complete run through 
Nfiles x Nrun beam-
pulses. Lorentz-force 
detuning is varied 
randomly between 
files; Cavity 
microphonics are 
varied from run to run.

 
Figure 1: Flow-chart for scream.m. The Loadinput, Prerun and Simulatefield modules are 
discussed in further sections of this document. 



 S.C.R.E.A.M – program documentation 

 4-3

Only in the case of debugging=0 (or>3) is the program fully 
executed. The full execution consists of two loops over the Nfiles and 
Nruns RF pulses. The Cavities structure is redefined in this case as 
SimCav to allow for a redefinition of the KLorentz vector. With every 
cycle through the outer (Nfiles) loop the KLorentz vector is redefined 
with Eq. (4-1). This implementation was chosen to take into account 
the fact that the individual cavity Lorentz-force detuning constants 
should be invariable once the accelerator is built. In that sense 
different Nfiles describe different accelerators (with the same layout). 
Note that the program assumes that the Lorentz-detuning factor, 
which is usually given in Hz/(MV/m)2) was already divided by the 
square of the cavity length in the input. 
 

( )
( ) ⎟⎟
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⎞
⎜⎜
⎝

⎛
∆+= 21

MV
HzRkLKLKL jjoldjnewj ,,            (4-1-a) 

 
“New” and “old” in Eq. (4-1) refer to the KLj vector of the former cycle 
(or KL0 as defined in Cavities in the case of the first cycle). Rj stands 
for a vector of pseudo random numbers for cavity j produced with the 
MATLAB randn function. These random numbers follow a (normalized) 
Gaussian distribution around zero with variance 1. The frequency 
change in each cavity due to fast (slow) microphonics is randomly 
varied for each bunch (pulse) in the SimulateField.m routine, which 
is called once every run to perform a simulation of an RF pulse. The 
scream.m script also redefines the Lorentz-force pre-detuning that 
was previously defined in the input on the basis of the KL0 detuning 
constants given in the input (Cavities.Phase). This ensures that the 
Lorentz-force pre-detuning is as precise as possible.     
 

( ) ( )HzradVcavKLKLLL jjnewjoldjnewj −−−∆=∆ 2
02 ,,,, πωω         (4-1-b) 

 
The results of the simulation of an the first bunch (debugging =2&3), 

consisting of Nmpb macro-particles distributed over phase-space, are 
contained in the cavpre and bmpre structures, which contain the main 
parameters of the cavities and of the beam for all time steps in the 
pulse as listed in Table 4-3 (see discussion of SimulateField.m for 
further details). These fields can be very large and they are stored in 
the preresults.mat MATLAB data file created by scream.m in the 
datadirectory directory. 

 
For a complete run the output structures are named cr (cavity-results) 
and br (beam-results). They are organized into the beamresults.mat  
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Table 4-3: S.C.R.E.A.M output parameters. 

Parameter Comment units 
Beam   
Time arrival time (phase) of all macroparticles/bunch in each 

cavity (pre-results) or in final cavity (final results) 
sec 

Energy energy (velocity) of all macroparticles/bunch in each 
cavity (pre-results) or in final cavity (results) 

MeV 

   
Cavities   
CField, SField accelerating voltage in cavity incl. phase (actual & set) MV 
CForwd, SForwd amplified control signal for vector-sum control – 

difference of set-voltage and actual voltage; (actual & 
set, incl. feed-forward & feedback) 

MV/Ω0.5 

CDrive amplified control signal for vector-sum control including 
phase-shifter – (incl. feed-forward & feedback) 

MV 

dw detuning of each cavity at each time step  rad 
CCur beam loading factor incl. phase (rel. to synchronous)  A 
ECur bunch final E fluctuation (rel. to synchronous)  MeV 
Phase shifters   
CFwdpl forward attenuation/phase-shift in each phase-shifter / 

time step (after feedback) 
relative 

CRvspl reflection from each phase-shifter / time step (after 
feedback) 

relative 

sh1,sh2 phase shifter corrections for amplitude and phase rel/rad 
ps1,ps2 amplitude and phase signal for phase-shifter PS ??? ? 
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Prerun.Time (NcavxNmpb)

Prerun.TTF (NcavxNmpb)

Prerun.dE (NcavxNmpb)
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Rvspl(NcavxNs)

sh1 (NcavxNs)

sh2 (NcavxNs)

ps1 (NcavxNs)

ps2 (NcavxNs)

SField (NcavxNs)
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Figure 4-2: Output structures for the different program options. 
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and cavityresults.mat data files. MATLAB’s load command makes the 
data available. They contain similar fields as those listed in Table 4-3. 
The only difference is that each run and file is a separate matrix with 
all NcavxNs/Downsample data (e.g. cr(10).CField is the cavity field 
matrix (NcavxNs/Downsample) for the 10th run). The reduction in the 
number of columns (or time steps) by the Downsample factor is 
described further in the context of SimulateField.m. Fig. 4-2 also 
shows the different output fields. 
 

4.3 LoadInput.m 
 
The LoadInput.m routine reads the input file linac.csv. It converts 

the linac.csv input into the MATLAB structures Cavities, Phaseloop and 
Bunches. In addition it produces a derived structure called Mod, which 
contains relevant information on the modules (Table 4-4). 
Loadinput.m also produces some additions to the General structure 
(Table 4-5). Finally this script also modifies some of the existing input 
data (such as converting phase from degrees to rad). 

 
Table 4-4: Fields in the Mod structure-variable. 

Field Comment unit 
Cavities string with indices of cavities contained in module (Nm) - 
N number of cavities per module (Nm) - 
Feedback average feedback gain of all cavities in module (Nm) proportional 
FillOff average fill delay of all cavities in module (Nm) µsec 

Table 4-5: Additions to the General structure. 

Field Comment unit 
doPhaseloop =1 if Phaseloop exists (scalar) − 

 
Fig. 4-3 shows a flow-diagram for Loadinput.m. The following 

discusses the main steps of the routine.  
 
After checking that the data directory name is defined (and setting it 

to run0data if it is not defined) LoadInput.m opens linac.csv with the 
fopen function. The input file is read line by line with the fgetl function. 
When the ‘{‘ character, which signifies the beginning of a structure, is 
detected, a more complicated line-by-line data transfer is initiated. 
This line-by-line transfer consists in preparing the data (removing 
quotes, comments and unnecessary commas) for the sscanf function, 
which parses the strings from the tline variable to the temporary A 
matrix. Once the string ‘}’ is detected, the data scanning is terminated 
and the data are parsed into a structure variable named Varname,  
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LOADINPUT.M

OPEN INPUT FILE READ NEXT LINE in INPUT

DETECT ‘{‘ ? READ VARIABLE-NAME 

READ FIELD-NAMES COUNT FIELD-NAMES 

WHILE (until ‘}’ detected) 

READ IN DATA STRING 
LINE-BY-LINE - TRANSFER 
INTO TEMPORARY MATRIX

Creation of Comma Vector 

CREATE STRUCTURES 
from VARIABLE-

NAMES, FIELD-NAMES 
& DATA 

CLOSE INPUT FILE CREATE MOD STRUCTURE

N

}

LOADINPUT.M

OPEN INPUT FILE READ NEXT LINE in INPUT

DETECT ‘{‘ ? READ VARIABLE-NAME 

READ FIELD-NAMES COUNT FIELD-NAMES 

WHILE (until ‘}’ detected) 

READ IN DATA STRING 
LINE-BY-LINE - TRANSFER 
INTO TEMPORARY MATRIX

Creation of Comma Vector 

CREATE STRUCTURES 
from VARIABLE-

NAMES, FIELD-NAMES 
& DATA 

CLOSE INPUT FILE CREATE MOD STRUCTURE

N

}

 
Figure 4-3: Flow-chart for LoadInput.m. 

 
which contains the data in the respective sub-arrays Fieldnames. This 
process is repeated for as many times as there are “{“ (three in our 
case). 

 
LoadInput.m also prepares some additional structure variables from 

the input. These are the Mod and additions to the General structure. 
The Mod structure contains information about the number of cavities 
per module (and their indices), the average feedback gain and fill-off 
settings of all cavities in each module. The addition to the General 
structure consists in defining the scalar doPhaseloop variable, which is 
1(0) if the Phaseloop structure is (not) defined in the input. The 
LoadInput.m file also defines the Lorentz-detuning constant KL (-1 
Hz/(MV)2), Lorentz-detuning ∆kL (0.1, relative to K) if they are not 
defined in Cavities. Note that the program assumes that the Lorentz-
detuning factor, which is usually given in Hz/(MV/m)2) was already 
divided by the square of the cavity length in the input. The 
Cavities.Atten field is created, with the default values 1. This field is 
not used anymore (historical artifact). LoadInput.m converts the 
phase advance setting in Cavities.Phase from degrees to rad. Finally 
LoadInput.m recalculates the Cavities.Feedback vector, dividing the 
gain factor given in the input by the number of cavities in each module 
and re-assigning it to each cavity accordingly. 
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4.4 Prerun.m 
 
The Prerun.m routine simulates the passage of a pilot-particle and a 

pilot bunch consisting of Nmpb macro-particles through the linac. It 
essentially serves as a debugging tool. It also calculates the footprint 
of the synchronous particle in E/t phase-space. Fig. 4-4 gives a flow-
chart for Prerun.m. Table 4-6 lists the output arrays. 

 
 Table 4-6: The output arrays of the Prerun.m routine are grouped into the Prerun structure. The 
fields within the structure are listed in the table. 

Array Comment 
Prerun.Energy energy of all mps in synchronous bunch along linac (NcavxNmpb) 
Prerun.Time arrival time of all mps in synchronous bunch along linac (NcavxNmpb) 
Prerun.TTF norm. trans-time-fact. of all mps in sync. bunch in all cavities (NcavxNmpb) 
Prerun.dE difference betw. mp energy and sync. energy in all cavities (NcavxNmpb) 
Prerun.dt difference betw. mp arrival time and sync. time in all cavities (NcavxNmpb) 

 
 

PRERUN.M

ACCELERATION.CPilot
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Start Time
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Charge
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no detuning

no feed-back
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distributed around 
synchr. particle)

Difference in arrival time 
of each macro-particle to 
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at each cavity

Difference in energy of 
each macro-particle to the 
synchronous particle after 

each cavity

Arrival time at each cavity

energy-gain in each cavity

TTF in each cavity
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Prerun

PRERUN.M

ACCELERATION.CPilot

Start Energy

Start Time

Mass

Charge

Vacc = T’ x Vcav x cosφ0

no detuning

no feed-back

Pilot = 
synchronous 

particle

Arrival time at each cavity

energy-gain in each cavity

TTF in each cavity

ACCELERATION.CBunches

Bunches= 

synchronous bunch 
(Nmpb macro-particles 

distributed around 
synchr. particle)

Difference in arrival time 
of each macro-particle to 
the synchronous particle 

at each cavity

Difference in energy of 
each macro-particle to the 
synchronous particle after 

each cavity

Arrival time at each cavity

energy-gain in each cavity

TTF in each cavity

Cavities

Prerun

 
Figure 4-4: Flow-chart for Prerun.m. 

 
Prerun.m first creates the structure variable Pilot, which contains 

several scalar fields, such as Energy (starting energy Eini0), Time (the 
arrival time of the pilot particle in the first cavity tini0, here 
automatically set to zero), Mass (938 MeV for protons), Charge (in 
units of the elementary charge), N (=1) and I (=1). The current is 
irrelevant for the tracking of the synchronous particle since no beam-
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loading is taken into account. The Pilot fields are for the most part 
initialized with the first line of the input structure variable Bunches. 

 
Following the initialization of Pilot, Prerun.m calls acceleration.c, 

which simulates a run of the pilot particle through the linac. The 
variables of acceleration.c, however, are such that only one macro-
particle with the above characteristics (Pilot), which is at the 
synchronous phase in all cavities, is assumed (instead of Bunches, 
Pilot is passed on in the function call). Also, the fields in the cavities 
are assumed to be the nominal design fields (Cavities.Amplitude is 
passed on in the function call). Since the pre-set beam phase-advance 
is taken into account in the calculation the pilot particle is, strictly 
speaking, not at the synchronous phase. For the purpose of all 
following calculations, however, this will be the reference (or 
“synchronous”) phase since the beam phase advance is always 
applied. Acceleration.c returns the structure variable ar, which 
contains the Time, Energy and TTF arrays. All three arrays have Ncav 
(number of cavities) lines and Nmpb (number of macro-particles) 
columns. Since Nmpb=1 for Pilot, they are vectors in this case. The 
time vector contains the arrival times of the pilot particle at the center 
of each cavity. The energy vector contains the energy of the pilot 
particle at the end of each cavity. The TTF vector contains the transit-
time factor for the synchronous particle in each cavity. Prerun.m then 
uses the arrival time vector ar.Time to overwrite the Cavities.Time 
vector with the arrival times of the synchronous (or reference) particle 
as needed in subsequent sections of the program.  

 
The second part of PreRun.m includes a simulation of an entire 

bunch with acceleration.c. The input to acceleration.c is such that 
only one bunch consisting of Nmpb macro-particles is accelerated. This 
bunch uses macro-particles distributed in E/t space such as prescribed 
in Bunches, but does not vary the bunch-center position from 
Eini0/tini0. It is therefore a synchronous bunch. The cavity amplitudes 
are again set to their nominal values, i.e. no beam-loading or detuning 
phenomena are taken into account (SimulateField.m is not called). 
As before the beam phase-advance is taken into account. The output 
of this second part of PreRun.m consists of the prerun arrays: 
Energy, Time, TTF, dt and dE. These are matrices containing the 
calculated quantities of the same name as a function of cavity (rows) 
and macro-particle (column). The first three are similar to those in ar, 
but they contain the Ej,k ,tj,k ,T’j,k information for each macro-particle in 
the synchronous bunch. In the first column is the information about 
the first and thus synchronous macro-particle. The arrays dt and de 
are derived NcavxNmpb arrays, which contain information about the 
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arrival time difference and energy difference in each cavity of each 
macro-particle (in the synchronous bunch) to the synchronous particle. 

 

4.5 acceleration.c 
 

Acceleration.c tracks the macro-particles through the linac, i.e. it 
calculates sequentially the arrival time of the particle in each cavity. To 
obtain the arrival time in each cavity, acceleration.c needs to 
calculate the effective acceleration of each particle in every cavity. This 
calculation uses the transit-time factor (T’), the phase difference of the 
particle with respect to the synchronous particle (∆φ) and the total, 
complex accelerating voltage (V

)
) in each cavity as provided in the 

function call. In the program SimulateField.m the cavity field 
calculation, taking into account beam-loading, detuning and vector-
sum as well as vector-modulator feedback, is performed and passed 
on to acceleration.c for tracking. Acceleration.c also uses the  

 
Table 4-7: The output arrays of the acceleration.c routine are grouped into the ar structure. The 
fields within the structure are listed in the table. 

Array Comment 
ar.Energy energy of all macro-particles along linac (NcavxNmpb) 
ar.Time arrival time of all macro-particles along linac (NcavxNmpb) 
ar.TTF normalized transit-time-factor of all mps in all cavities (NcavxNmpb) 

 
ACCELERATION.C

Arrival time of 
synchronous 

particle (Prerun)

includes φ0

RF phase offset in 
cavity (Input)

∆φ

TTF

Loop over all 
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Loop over all 
macroparticles

INPUT MATLAB C

Energy gain 
in cavity

Arrival time, energy and TTF 
of each mp in every cavity

(complex) 
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in each 
cavity

Arrival time of particle 
(time of flight)

SimulateField.m

ACCELERATION.C

Arrival time of 
synchronous 

particle (Prerun)

includes φ0

RF phase offset in 
cavity (Input)

∆φ

TTF

Loop over all 
cavities

Loop over all 
macroparticles

INPUT MATLAB CINPUT MATLAB C

Energy gain 
in cavity

Arrival time, energy and TTF 
of each mp in every cavity

(complex) 
acc. voltage 

in each 
cavity

Arrival time of particle 
(time of flight)

SimulateField.m

 
Figure 4-5: Flowchart of acceleration.c. 
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Cavities and Bunches structure as input parameters. Finally it also 
uses the Energy, Time and TTF vectors, calculated by Prerun.m, for 
the respective parameters of the synchronous particle. The output of 
acceleration.c consists of the NcavxNmpb vectors Time, Energy and 
TTF. They are summarized in Table 4-7. Fig. 4-5 shows the flowchart 
schematic for this subroutine. For faster computation acceleration.c 
is written in C-code. The acceleration.c routine can be compiled with 
the MATLAB mex command (producing acceleration.dll). In the 
Windows based program version #include <math.h> needed to be 
added in the file header. 

 
The first part of the program defines C-arrays, which read in the 

required input parameters from the MATLAB variables produced by 
LoadInput.m. Most of these parameters are from the Cavities input 
field: -1- the position of the center of each cavity along the linac 
(Position), -2- the so-called Time vector (see discussion in section 4-
4), -3- the cavity frequency (Frequency), -4- the phase-advance in 
each cavity (Phase), -5- the cavity βc (Beta), -6- the ratio of cell 
length and RF wave-length (GapLambda), -7- the number of cells per 
cavity (Cells), -8- the multi-cell mode in which each cavity is operated 
(e.g. π-mode), -9- the energy (as calculated in the input for the 
synchronous particle), and,  -10- the particle mass, -11- the particle 
charge and –12- the number of bunches.    

 
Acceleration.c calculates the arrival time, taj,k, of each macro-

particle k in each cavity j from the arrival time in the preceding cavity 
and the time of flight from the preceding cavity at the velocity given 
by the particle βb in the preceding cavity. The distances between two 
neighboring cavities are always measured from center-to-center. The 
center positions of the cavities are as provided in the input. The initial 
parameters Einik and tinik vary with each macro-particle k and are 
provided by the input (E0k, t0k) and SimulateField.m (coherent and 
incoherent fluctuations). Eq (4-2) calculates the arrival time for a 
single macro-particle k in each cavity j.   
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The particle velocity βb is calculated from the particle energy with: 
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where E is the kinetic energy of the macro-particle of given charge (q) 
and mass (m) contained in each macro-particle. Note that for the 
purpose of the calculation of the beam acceleration the exact number 
of single particles contained in a macro-particle is irrelevant. 
Acceleration.c therefore treats macro-particles as single particles 
(q=Bunches.Charge=charge of single particle, m=Bunches.Mass=mass 
of single particle in MeV). The kinetic energy of the macro-particle Ej,k 
is calculated iteratively through the linac from the energy gain in each 
cavity j. The energy gain per cavity is calculated from the transit-time 
factor T’j,k, the total cavity voltage jV

)
 (in MV) and the phase difference 

to the synchronous particle ∆φk,j according to Eq. (4-3). Note that there 
is a distinct difference between the phase difference between the 
beam and the synchronous phase (∆φk,j) and the phase factor in the 
cavity field (φc=arctanℑV/ℜV), which is the result of a mismatch 
between RF power supply and the (detuned) cavity resonance 
frequencies. The later is taken into account in the amplitude and phase 
of the accelerating voltage. The effective (real) acceleration, given the 
phase of the cavity field eiφc and the beam phase eiφb, is the real part of 
Vei(φc+ φb), which is Vcos(φc)cos(φb)-Vsin(φc)sin(φb). Vcos(φc) and 
Vsin(φc) are obviously the real and imaginary parts of the complex 
cavity accelerating voltage V

)
. 
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Note that V

)
 includes the effects of beam-loading and cavity detuning 

(and the respective corrective actions by vector-sum control and fast 
vector-modulator feedback).  
 

The field amplitudes in the cavities are calculated by the 
SimulateField.m sub-routine, which includes the simulation of beam-
loading, detuning and feedback. The phase-difference between the 
particle k in cavity j, ∆φj,k and the RF synchronous phase is calculated 
with: 

 
( ) ( )radtatsyncRFtaRF kjjjjkjjjkj ,,, −−=∆−=∆ ϖφωφφ 00 ,     (4-4) 

 
where tsyncj is the arrival time of the synchronous (or reference) 
particle in the center of cavity j, as calculated with acceleration.c 
during the first call by the Prerun.m routine (using the Pilot particle). 
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Note that tsync already includes the beam phase advance φ0, as read 
from the input (Cavities.Phase). The tsync vector is called BeamTime 
in acceleration.c (which is the new name of the Cavities.Time vector 
after the processing by acceleration.c). Before the simulation of the 
pilot particle, the BeamTime vector components are usually all (-1), as 
defined in the input file.  

 
Note that the phase-mismatch (ωRF(tsync-ta)) of the particle in each 

cavity is not computed with respect to some absolute phase, but to the 
phase of the synchronous particle! This therefore assumes that the 
designer of the linac has already defined the RF phase-settings for all 
cavities that satisfy the basic time of flight delays between cavities of 
the synchronous particle. These constant phase-settings are obtained 
using module-to-module delays in the modulator pulse, variations in 
the length of wave-guide between klystron and individual cavities and 
three-stub mechanical tuner settings for the fine tuning of the forward 
power to individual cavities. 

 
The transit time factor of the cavity, T’j,k used in Eq. (4-3), describes 

the effect of the beta-mismatch between beam and cavity on the 
effective acceleration voltage. In multi-cell cavities the transit time 
factor is dominated by cell-to-cell effects. The particular transit time 
factor implementation used here (Eq. (4-5)), referred to as T’, is 
slightly different from that commonly used in literature. It is 
normalized such that its maximum is 1 rather than 0.5. In this way the 
product ReV

)
T’ gives the effective accelerating voltage for the 

synchronous particle, independently of the particular longitudinal field 
profile of the cavity. (Strictly speaking, however, the transit time 
factor T given above only applies to the case of cavities with a more or 
less sinusoidal axial field profile, such as for instance in elliptical 
cavities, operated in the π mode). The transit time factor given below 
applies to a multi-cell cavity (Nc is the number of cells), where each 
cell is Lc long. The first term describes the single cell effects. The 
second term describes the cell-to-cell effects. The nominator in the 
first term was developed into a Taylor-series to prevent a singularity in 
the calculation. The second term also has a singularity at βc=βb, but 
this appears to be without consequences (probably because it is 
unlikely that βc=βb, both having a huge number of digits). A complete 
derivation of the transit-time-factor can be found in appendix A. 
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The passage of the macro-particles through the linac is simulated in 

two for-loops. The outer loop is over the macro-particles (nbunch as 
running index, which is an unfortunate choice as name) such as 
ordered in Cavities.Bunches. The inner loop is over the cavities (ncav). 
This inner loop calculates (and stores) the actual energy of the macro-
particle and their arrival time sequentially, cavity-by-cavity.  

 
 

4.6 SimulateField.m 
 
SimulateField.m calculates the cavity fields as a function of time, 

including beam loading, detuning and feedback for all bunches (and all 
its macro-particles) contained in one RF (macro-) pulse. Feedback 
loops using vector-sum regulation at the RF module level as well as 
individual cavity vector-modulators are simulated. This simulation 
obviously also includes the feed-forward settings used to pre-
compensate for detuning and beam loading. The calculation of the 
cavity detuning as a result of Lorentz-forces and microphonics (fast 
and slow) including the feed-forward, is in part provided by the 
separate detuning.m routine, which is discussed later. The effect of 
the vector-modulator is also modeled separately in the 
dophaseloop.m script, which is called by SimulateField.m. 
SimulateField.m uses the acceleration.c routine for the calculation 
of the beam acceleration, since the phase and energy of the macro-
particles also affect beam-loading. Finally it also uses the special 
dimsum.c routine as part of the simulation of the vector-sum 
feedback. 

 
SimulateField.m receives the Cavities, Bunches and General input 

arrays as read from the input file with the Loadinput.m routine. It 
also uses the Time and Energy vectors for the synchronous particles, 
as provided by Prerun.m. In addition it uses the Mod structure, 
provided by Loadinput.m, which contains information on each RF 
module as it is relevant for the RF phase and amplitude regulation at 
the klystron/module level (vector-sum control). The information 
contained in the Phaseloop array is needed for the control of the 
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feedback at the cavity level using vector-modulators. At this point, 
however, most of the Phaseloop fields are not used (with the only 
exception of the regulator gains) and most parameters of the feedback 
loops are hard-coded into the program. The use of Phaseloop will allow 
for individual adjustment of the phase-shifter feedback circuits (gains, 
initial set values, saturations, delays, time constants,..etc). 

 
The output of SimulateField.m consists of the cr (cavity-results) 

and br (beam-results) files, which contain the information on the fields 
in the cavities and the longitudinal bunch dynamics. The program 
makes a difference between the first and the subsequent runs. The 
first run is stored in the preresults.mat datafile (created automatically 
by the program in datadirectory). The subsequent runs are stored in 
the cavresults.mat and beamresults.mat files. The beam-result 
structure, br, consists of the (final) Energy, (arrival) Time and I 
arrays, which have as many rows as there are macro-particles and as 
many columns as bunches/time-steps (with beam on). One of each of 
these structures is stored for each run (pulse). Also stored are the 
coherent (scalar) and incoherent (vector, with an element for each 
bunch) Eini,tini,Iini contributions. These structures are initialized with 
the respective values in the Bunches field from the input file.  

 
The main field in the cavity-result structure, cr, is CField, which 

contains the cavity accelerating voltages for every bunch. The 
amplitude and phase changes as a result of detuning and beam-
loading are also included. Since the number is complex the phase 
information is contained in the phase of the complex number:  

 
Amplitude(MV)=abs(CField), Phase(deg)=180/pi*angle(CField) 

 
The CForwd field contains the feedback voltage correction signal in 

(MW)0.5 (incl. feed-forward) after vectorsum control. More precisely 
CForwd is the amplified difference between the set voltage and the 
actual voltage plus the feed-forward component SForwd. It is therefore 
the vector-sum control signal and proportional to the voltage that the 
feedback system tries to impose in the cavity. Squared it gives the 
beam-power that is demanded from the klystron to bring the field to 
the desired level. Note that the program, unlike the real case, does not 
pre-compensate for the reflection and attenuation of the forward 
power as a result of detuning and coupling loss. These effects (as 
discussed in appendix B) reduce the actual power the cavity receives. 
Since the program includes a strong feedback component, these losses 
will be made up by an increased demand in power during the next 
time step. Since the vector-sum feedback is performed at the module 
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level, the CForwd array has the dimension NmxNs, Note that CForwdl,i 
is instantaneous, for each time step i (i.e. it is not integrated!). This 
implies that the RF power source can follow instantaneously to load 
changes.    

 
The CDrive field is the amplified difference between the set voltage 
and the actual voltage plus the feed-forward component SForwd as 
well as the phase-shift and attenuation provided by the phase-shifter, 
already converted to MV. In the current implementation it also takes 
into account multiple power reflection between the cavity and the 
phase-shifter. CDrive therefore is the feedback control signal after the 
vector-modulator in MV. The CDrive array has dimension NcavxNs 
(although not all cavities might have vector-modulators, in which case 
the phase-shifter effect is 1). Note that all these fields are complex, 
with the real part containing the amplitude information and the 
imaginary part holding the phase information. The cavity reference 
phase is zero, therefore all phase errors are with respect to zero and 
the feedback/feed-forward systems therefore aim at restoring zero 
phase. In a real machine, of course, the cavity reference phase would 
include the synchronous phase, cable delays,..etc.  

 
CFwdpl holds the actual forward signal supplied by the fast ferrite 

vector-modulators (complex, i.e. amplitude, relative to 1, and phase in 
rad). Since the set-point phase of the phase-shifters is usually not 
zero, amplitude signals >1 are possible. Rvspl contains the reflection 
signal from the vector-modulators (relative to 1).   

 
Sh1 and sh2 contain the phase correction signals (rad) provided by 

the two branches of the phase-shifters.  
 
Ps1 and ps2 provide the phase-shifter power supply signals (they are 

presently not used!) as determined by the program.  
 
The remaining output arrays are w12 (cavity bandwidth) and dw 

(total cavity detuning phase) as well as K (Lorentzforce detuning 
constant for each cavity). These can be useful to calculate parameters 
related to the detuning. The detuning is obviously also an important 
output parameter. These arrays are listed in Table 4-8 and 4-9. Fig. 4-
6 shows a flow-schematic for SimulateField.m. After the first run 
(debugging=2 or 3) the resulting structures are called bmpre and 
cavpre. 
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Table 4-8: The arrays of the beam-results structure (br). 

Array Comment units 
randstate state of MATLAB randn function (2 scal) - 
Eoff initial sigma E offset of bunch centroid – coherent part (scal) MeV 
Toff starting time offset of bunch centroid - coherent part (scal) sec 
Ioff variation bunch current - coherent part (scal) A 
Efluc initial sigma E offset of bunch centroid – incoherent part (Nb) MeV 
Tfluc starting time offset of bunch centroid - incoherent part (Nb) sec 
Ifluc variation bunch current - coherent part (Nb) A 
Energy final energy of macro-particles for all bunches (NmpbxNb) MeV 
Time arrival time at last cavity of mp for all bunches (NmpbxNb) sec 

 
Table 4-9: The arrays of the cavity-results structure (cr). 

Array Comment units 
CField actual, complex accelerating voltage in each cavity at each 

time step (NcavxNs) 
MV 

CForwd instantaneous, amplified difference signal between set-
voltage and actual voltage (vector-sum control signal) 
(NmxNs), gives klystron power when squared 

MV/Ω0.5 

CDrive incremental, forward voltage supplied for each cavity at 
each time step (NmxNs) 

MV 

CFwdpl actual, complex forward signal (complex) from vector-
modulators at each time step (NcavxNs) 

rel. (rad) 

Rvspl actual, complex reflection from vector-modulator (NcavxNs) rel 
SField set-point (real) accelerating voltage in each cavity at each 

time step (NcavxNs) 
MV 

SForwd incremental, complex feed-forward set-point forward power 
to each cavity at each time step (NmxNs) 

MV/(Ω0.5) 

sh1 actual phase-shifter amplitude correction (NcavxNs) rel. 
sh2 actual  phase-shifter phase correction (NcavxNs) rad 
ps1 actual phase-shifter PS signal for amplitude correction 

(NcavxNs) 
? 

ps2 actual phase-shifter PS signal for phase correction 
(NcavxNs) 

? 

CCur actual, complex beam-loading factor (NcavxNs) A 
ECur actual, average difference of bunch energy to synchronous 

particle (NcavxNs) 
MeV 

w12 cavity bandwidth, HWHM (=πfRF/QL) (Ncav) rad-Hz 
dw actual, total cavity frequ. shift due to Lorentzforce and 

microphonics detuning and feed-forward (NcavxNs) 
rad-Hz 

K Lorentz-force detuning constant for each cavity, fixed for 
entire pulse (Ncav) 

Hz/(MV)2 
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Figure 4-6: Flow diagram for SimulateField routine. 

 
Injection Jitter 
 

The starting-energy, starting-time and current (“0”) of the macro-
particles for the synchronous bunch (i.e. the bunch with a synchronous 
centroid) are defined in the Bunches field in the input (see discussion 
in 3.5). In addition, the bunch centroid is shifted randomly to simulate 
beam jitter at injection. There are coherent (“coh”, pulse-to-pulse) and 
incoherent (“fluc”, bunch-to-bunch) contributions to the injection 
energy, time and bunch-current jitter. The coherent contribution is 
added at the start of SimulateField.m. The incoherent contribution is 
added within the loop over the bunches (=time-steps with beam on) 
within a pulse. The coherent and incoherent contributions are 
calculated through multiplication of the MATLAB randn function1, which 
produces a (pseudo) random number from a normal distribution 
around zero (variance 1), with the respective fluctuation sigma from 
the input field General. The centroid position in longitudinal phase-
space at the end of one pulse (after iteration through as many 
bunches as there are “beam-on” time steps within a pulse) becomes 
the initial value for the next pulse. Depending on the number of  

                                                 
1 The two implementations used in SimulateField.m are randn and randn(Nbeam,1). The former produces a 
random number and is used for the coherent contribution. The latter produces a vector with Nbeam random 
numbers and is used for the incoherent fluctuation. Nbeam is the number of time-steps during beam-on 
time and thus the number of bunches in a pulse. The sequence of numbers generated is determined by the 
state of the generator.  Since MATLAB resets the state at start-up, the sequence of numbers generated will 
be the same unless the state is changed. 
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Figure 4-7: The different levels of variations of the macroparticle (k) position in longitudinal phase-
space. 

 
arguments the randn function will return different results. The initial 
state of randn at the start of SimulateField.m is stored in the 
br.randstate variable from where it can be retrieved to recalculate a 
particular case. In that case, the randstate variable needs to be added 
as a fifth input variable to the call of SimulateField.m. Therefore 
SimulateField.m first checks for this fifth variable and uses it to set 
the state in the randn function. The randn(‘state’) is a two element  
vector. Fig. 4-7 illustrates the different steps for the definition of the 
beam longitudinal phase-space jitter at injection.   

 
Eq. (4-6) gives the complete formula for the start value settings of 

the mps in longitudinal phase space. The bunch-to-bunch variation of 
the incoherent contribution is symbolized in Eq. (4-6) by the index i. 

 
 

( )MeVNbiREflucREcohEEini ikik ,..,..., 10 =×+×+= σσ         (4-6a) 

 
( )sec,..,..., NbiRtflucRtcohttini ikik 10 =×+×+= σσ          (4-6b) 

 
( ) ( )ANbiRIflucRIcohIIini ikik ,..,...%(%)

, 1
100

1
100

10 =×+⎟
⎠
⎞

⎜
⎝
⎛ ×+=

σσ
     (4-6c) 

 
E0k, t0k and I0k values are those defined in the input (Bunches). 

They obviously also include the Eini0 and tini0 offset of the 
synchronous particle. 
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Array Initialization 

 
Simulatefield.m then proceeds to initialize the main calculation and 

output arrays in the beamresults, br(NmpbxNb), and cavresults, 
cr(Ncav or Nm x Ns), structures. These arrays are usually matrices 
with a row for each macro-particle / cavity (or module) and a column 
for each bunch / time-step. While in the case of the cavity parameters 
the data for each time step are stored, the number of time steps is 
limited to those during which there is beam in the case of the beam 
parameters. These arrays are listed in Table 4-8 and Table 4-9. 

 
After array initialization, SimulateField.m prepares some 

parameters, which can be computed outside the time-loop. Among 
them is the cavity bandwidth ω12 (=πfRF/QL). Others are the cavity 
filling, the cavity detuning due to slow microphonics and the set-value 
for the RF power supplied to the cavity during filling and beam.  

 
 

Filling Curve 
 
The function describing the filling of each cavity uses a universal fill-

curve, which depends only on the fill-time tfj (and fill-time delay tfoj) 
of each cavity j as defined in the input. As discussed in chapter 3 the 
individual fill-time of each cavity is determined from tfj-tfoj. The 
universal fill-function, v(t), is relative to a cavity amplitude of 1 (a.u.). 
It is then multiplied with the nominal voltage Vcavj in each cavity to 
obtain the set-values of the cavity voltages SFieldj. Eq. (4-7) gives 
vj(t), as it is calculated separately for every cavity j. 
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Fill Curve for Cavities - FillOff=200, Fill=500, Tau=250
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Figure 4-8: Cavity fill-curve for a tfill=500 and a tfill-off=200. 

 
Also shown in Fig. 4-8 is a different filling function, which is used in 

the latest implementation of the program (“New filling function”). This 
new function includes the FillTaylor parameter, which allows varying 
the fill-function shape from linear (FTayl=1) to exponential (FTayl≠1). 
Since the FTayl factor is given in the input for every cavity, cavity-to-
cavity variations of the filling function can be implemented. Nfilloff is the 
number of time steps during the fill-off delay.  
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Forward Power Feed-Forward 
 
The forward power to the module l allows setting or maintaining the 

field Vcavj during the filling and beam loading. In the notation used 
here, the feed-forward signal, Sfwd, has the unit square root of power. 
Eq. (4-8) gives the forward voltage feed-forward defined in 
SimulateField.m. The program applies the same philosophy as was 
applied to TTF, which is that of adaptive feedback, i.e. the feed-
forward is chosen such as to minimize the feedback needed. Note that 
the index l indicates the average of all cavities j in the module l. This 
averaging is needed since the forward power supplied by the klystron 
is the same for all cavities in a module. Also note that the forward 
signal is obviously proportional to the forward power delivered by the 
klystron. It is also proportional to the accelerating voltage the cavity 
will deliver as it receives the forward power from the klystron.   

 
As typical for the strongly over-coupled cases, which seek to obtain 

the matched cavity impedance with beam, the cavity is not matched 
during filling. In the strongly over-coupled condition the coupling 
losses strongly dominate the wall losses in the cavity: RL~Rext~rQL. 
The drive signal is typically two times the nominal accelerating voltage 
because of the strong reflection in the unmatched case (see appendix 
B for further explanation). Here it was reduced to 50% of the nominal 
voltage because the vector-sum feedback was found to be strong 
enough to regulate the voltage during filling. During beam-loading the 
cavity is matched and the forward voltage goes through to the cavity 
unimpeded. In this case the default forward power drive signal is 
chosen such as to compensate roughly for the expected voltage drop 
in the cavity due to beam-loading. In TTF the drive signal at flat-top is 
typically ~25% of the nominal voltage. Here the expected beam-
loading is calculated directly, including the beam phase advance as the 
expected difference between the beam and the klystron phase. The 
feed-forward phase factor therefore neglects the phase variations 
caused by variations in the acceleration history of the bunch. This 
approach is good enough to first order, given that the variations from 
the phase advance offset are usually kept to the <5° level (with the 
help of the vector-sum regulation, and in some cases, the phase-
shifters). The formula describing the beam-loading is discussed in 
further detail later.  

 
Eq. (4-8) gives the instantaneous feed-forward signal to the cavities. 

It suffices to note that in Eq. (4-8), the 10-6 factor serves to scale the 
voltage to MV, while the  (1-exp(-ω12∆t)) factor can be understood 
when inserting Sfwd0 into Eqs. (4-13) & (4-14).  It is essentially a 
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factor, which will cancel out such as to compensate exactly the voltage 
drop due to beam-loading (such that ijij VV ,,

))
=+1 ) THAT IS NOT TRUE 

(CHECK!!). In fact it anticipates the coupling loss in the cavity. 
Coupling loss is discussed in further detail in appendix B. It is 
important to note that the forward drive signal is instantaneous. Sfwd0 
is the initial matrix of the forward signal field referred to as SForwd in 
the program. 
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SForwdj,i(MV/(Ω)1/2)=Sfwd0j,i 
 

The program includes the so-called conversion factor rQLRL 22 ≈  

to convert the drive signal into the square root of the forward power. 
Note that the drive signal should not only be squared, but also 
multiplied with 1012 to obtain the result in Watt, since the voltages are 
in MV. As will be explained later the forward signal is converted into a 
forward voltage increment (CDrive) before adding it to the actual 
cavity field (CField). CDrive, however, also includes the contributions 
of vector-sum and vector-modulator feedbacks, attenuations, feedback 
gains, ...etc.   

 
 

Cavity Detuning 
 
As discussed in further detail in appendix B, cavity detuning strongly 

increases the amount of power reflected from the cavity. 
Superconducting cavities, with their narrow bandwidth 
(ω12<1kHz,HWHM), are strongly affected by detuning. The cavity 
bandwidth, ω12, can be calculated with Eq. (4-9).  

 

)( Hzrad
QL
fRF

j

j
J −= πω12                (4-9) 
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When the cavity is detuned from the RF drive signal by ∆ω, the 
ensuing phase-shift is arctan(∆ω/ω12). When ∆ω= ω12 the phase-shift is 
45°. The voltage amplitude is also reduced by reflection as a result of 
the frequency mis-match (at ∆ω= ω12 the voltage drops by a factor2). 
 

Although detuning is a dynamic event resulting from mechanical 
excitation of the cavity, feed-forward correction can be applied to 
some extent. The Lorentz-force detuning, for instance, can be 
approximately anticipated, pre-detuning the cavity to some positive ∆ω 
that will then compensate the Lorentz-force detuning at nominal field 
after filling. In TTF a Piezo tuner was successfully used to compensate 
the detuning using a feed-forward function. SimulateField.m applies 
the fixed pre-detuning approach. Such pre-detuning can be obtained 
by mechanically deforming the cavity. The pre-detuning approach 
results in a strongly detuned cavity at the beginning of the filling 
process, with the detuning gradually decreasing as the cavity 
deformation occurs during the filling. 

 
SimulateField.m calculates the cavity detuning - see Eq. (4-10) – 

as a result of (listed in the same order as in the equation) Lorentz-
force feed-forward pre-detuning (positive to compensate for the 
expected Lorentz-force detuning, which is negative), slow 
microphonics, fast microphonics and Lorentzforce-detuning (∆ωLF). 
The Lorentzforce pre-detuning, ∆ωLj, and the slow micro-phonics 
detuning σmjRj are both set during the initialization of ∆ω . Note that 
the scream.m script recalculates the pre-detuning from the new 
Lorentz-force detuning constants KL (see the discussion in 4.2). The 
fast microphonics detuning contribution, σmfjRj is added again at each 
time step (with Rj,i varying each time i). The Lorentzforce detuning is 
field dependent and is therefore recalculated from the actual cavity 
fields for the next time-step. It is also the strongest contribution to Eq. 
(4-10). The calculation of ∆ωLF is discussed in section 4.7.  

 
( )HzradLFRmfRmL ijijijijijjij −∆+++∆=∆ ,,,,,, ωπσπσωω 22          (4-10) 

 
∆ωLj is usually positive and ~2 kHz in TESLA type cavities, several 

times larger than the cavity bandwidth. It is calculated in the input 
from the Lorentz-detuning constant and the nominal cavity voltage. 
Scream.m recalculates it to adjust it to the randomly varied individual 
cavity detuning constants.  

 
The half-widths of the slow and fast distribution of microphonics 

effect in cavity j, σmj and σmfj is taken from the Cavities input. Since 
the slow micro-phonics detuning is updated every pulse its 
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characteristic time constant is ~Hz. The fast micro-phonics distribution 
is updated at every bunch (=time-step=1µsec), so the characteristic 
time constant is MHz. It is not clear whether such fast microphonics 
really exist. The fast micro-phonics was implemented nevertheless. 
The micro-phonics detuning frequencies being much smaller (10-100 
times) than the Lorentz-force detuning frequency, it is secondary. 
When the Lorentz-force detuning is compensated, however, 
microphonics can become the leading detuning term (it remains much 
smaller than the bandwidth).  

 
The Lorentzforce-detuning frequency shift is one of the last elements 

calculated in SimulateField.m. It is, in fact, calculated by a special 
routine called detuning.m, called from SimulateField.m once every 
time step for the next time step. The Lorentz-detuning needs to be 
recalculated at every time-step, because it depends on the cavity 
fields, which can vary from bunch-to-bunch. The Lorentzforce detuning 
constant Kj (Hz/(MV)2) of the jth cavity is taken from the Cavities input.  

 
The half-width of the distribution of Lorentz-detuning constants in 

cavity j, ∆kLj , which is called Kspread in Cavities and defined relative 
to KL, is added to the Lorentz-force detuning constants once every 
“file” (that is why there is no bunch index i with the random function R 
in Eq. (4-9). The random variation of the Lorentz detuning constant for 
each cavity (the last term in Eq. (4-9)) is performed in scream.m, 
which prepares the new KLj vector for the Simcav structure. This set of 
constants is kept for every Nfile. As before, the random numbers are 
provided by the MATLAB randn function. The ∆ω  factor for each cavity 
at each time step is also given in the output (cr.dw). 

 
 

Loop over Time 
 
At the core of the SimulateField.m routine is the calculation of the 

instantaneous field in the cavities during the passage of every bunch. 
Following initialization of the main parameter arrays and the beam 
injection jitter settings described above, SimulateField.m enters the 
loop over the time steps. SimulateField.m tracks the particles 
through the linac before calculating the cavity fields. The cavity field 
changes due to beam loading and feedback are therefore applied to 
the next time-step. The beam tracking is performed with 
acceleration.c, which calculates the energy-time profile of all macro-
particles in the bunch along the linac. The bunch energy and especially 
the phase information are necessary for the subsequent calculation of 
the field amplitude in each cavity, CField, because of its effect on the 
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beam-loading. Once the bunch has been tracked through the linac the 
Time and Energy arrays (Ncav×Nmpb) are available to calculate the 
beam-loading parameter for the next bunch. The main parameters for 
beam-loading are the phase of the bunch with respect to the 
synchronous phase (which includes the beam phase advance!), the 
bunch current and the beam energy dependent (also in Vfwd) transit 
time factor. The phase-factor is calculated from the difference of the 
cavity arrival time and the Cavities.Time vector, which contains the 
arrival times at the cavities for the synchronized particle.  

 
 

Cavity Voltage 
 

Fig. 4-9 shows the basic physics model according to which the cavity 
voltage is calculated. This model assumes that the beam-loading (∆Vb) 
occurs in a much shorter time than the duration of the time step (here 
1 µsec), thereby approximating the beam-passage with a delta-pulse. 
After the passage of the bunch the refilling of the cavity, which is a 
slower process, brings the cavity voltage back to more or less the 
desired level. The cavity re-filling within a time step is assumed to 
occur at constant klystron power. At the same time the cavity is losing 
power through the input coupler. As clearly shown in the plot the filling 
and coupling loss functions are linear for the duration of a few time 
steps. Also, the total cavity forward power is regulated (feed-forward  
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Figure 4-9: Example of beam-loading, filling, coupling loss and the resulting cavity voltage. 
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voltage Vfwd). The regulation includes the tabulated feed-forward 
settings (SFwd0), the vector-modulator phase-change and amplitude  
(CFwdpl) and the vector-sum feedback. The vector-sum  (included in 
CForwd) and vector-modulator (CFwdpl) feedback settings applied 
were determined during the previous time step. This process is 
repeated every time step. The change of voltage in the cavity is 
described with Eq. (4-11) 2, where ∆ω is the cavity detuning (Eq. 4-10) 
from the klystron drive frequency and ijV ,

)
 the complex cavity field. The 

derivation of this equation is given in Appendix B. 
 
In the Fermilab PD the bunch spacing is much shorter than 1 µsec, 

but the bunch charge in S.C.R.E.A.M can be chosen such that the 
average beam-loading is the same. The fact that the filling curve is 
linear within the time step of the program allows this simplification. 
(The voltage at the end would look the same if the beam-loading steps 
would be distributed over many smaller steps.) 

 
SimulateField.m calculates the cavity fields and forward power 

settings for the next time-step (bunch) using Eq. (4-11), where ijV ,

)
 is 

the voltage in cavity j at time i, ∆Vbj,i, the beam loading voltage due to 
bunch i, and Vfwdj,i, the forward wave voltage as supplied by the 
klystron via the phase-shifter (if there is one). This equation describes 
the subtraction of the beam-loading voltage (Eq. (4-12)) from the 
cavity voltage as well as the addition of the forward power. The factor 
exp(-ω12∆t) describes the power lost through the input coupler. The 
phase factor exp(i∆ω∆t) describes the detuning of the cavity. The 
calculation of ∆ω was discussed before (Eq. 4-10) and is discussed 
again in section 4.7, where the detuning.m script is introduced. The 
actual cavity voltage field ijV ,

)
=CFieldj,i is a complex matrix of 

dimension NcavxNs. The difference between the cavity phase and the 
klystron (or reference) phase (=zero) is contained in the complex 
angle. Referring to the graphs in Fig. 4-9 this calculation provides the 
voltage at every µsec (the end points of the shown graphs). Also given 
below is Eq. (4-11) in the notation used in the program. 
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        (4-11) 

 
CFieldj,i+1(MV)=(CFieldj,i-simbeamj,i-CPj,i)x(e-(w12j-idwj,i)dt)+CPj,i 

                                                 
2 M. Huening, “ Selbstoptimierende Parametersteuerung der Hochfrequenz des Supraleitenden 
Linearbeschleunigers TESLA Test Facility”, Master thesis, RWTH/DESY, June 1998 
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CPj,i(MV)=(2w12j/(w12j -idwj,i))xCDrivej,i 

 
At the klystron level the phase and amplitude of the RF signal are 

regulated using vector-sum regulation. Certain cavities also have a 
phase-shifter. Both feedback systems, together with the feed-forward 
set-table (Eq. 4-8) determine the Vfwd function. This function is 
calculated with Eq. (4-14), explained later. The vector-sum control is 
described in further detail later (section 4-8). The effect of the fast 
ferrite vector-modulator is calculated at a later step with another 
script, also described later in this document (section 4.9). The cavity 
voltage and the forward-power settings are integrated from time step 
to time step. The beam-loading function is discussed next. Also shown 
in Fig. 4.9 is that the voltage variation during each time step is less 
than 1%. This is a benchmark figure for what the feedback control 
systems have to be able to achieve.  

 
 

Beam-Loading 
 
The beam-loading voltage ∆Vbj,i in each cavity j is calculated in 

SimulateField.m for each time step i with Eq. (4-12). A derivation of 
this formula is given in appendix B. Given below is the same formula in 
the notation used in the program.   
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,, MVtrRFeTIiniVb jj
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i

tatsyncRFi
kjkij

kjkjjj 60 10−−−− ∆=∆ ∑ ωωφ
       (4-12)  

 
simbeamj,i(MV)=IFacj,ixCCurj,i=ωRFjxrjx∆tx10-6xCCurj,ixe-iφ0j 

 
The phase-factor (ωRF(tsyncj-taj,k))i is calculated from the arrival 

time of the macro-particle k calculated with acceleration.c on the 
basis of the cavity fields (which is calculated from beam loading and 
feedback in the previous time step). The macro-particle currents are 
weighted with the macro-particle phase-factors (which are relative to 
that of the synchronous phase). It obviously also includes the fixed 
beam phase advance defined in the input. The beam-loading also 
includes the normalized cavity shunt impedance, r (=Rsh/Q0), the 
cavity frequency, ωRF, and the transit time factor, T’j,k. T’j,k is a matrix 
which contains TTF of the macroparticle k in the cavity j (calculated 
with acceleration.c), taking into account the actual βb of each macro-
particle in each cavity. The synchronous particle arrival time, tsyncj,k is 
a matrix made from k vectors of j length, which contains the arrival 
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time for the synchronous particle – with the same column copied k 
times. Multiplication over the time step converts the bunch current Ib 
to a charge, which is the relevant parameter for beam-loading. As 
shown in Fig. 4-9 the beam loading voltage is subtracted from the 
actual voltage instantaneously, producing a step in the voltage 
function, since the beam passes through the cavity in a very small 
fraction of the time step. Also indicated in the equation above is that 
the output parameter CCur represents the beam-loading. Upon 
division by T‘j,k (which is hard to calculate during post-processing but 
can be replaced by the synchronous transit-time factor as a first order 
approximation), CCur becomes the beam current.  
 

 
Forward Power Feedback 

 
Eq. 4-14 describes the Vfwd function. SVfwd is the forward voltage 

signal including vector-sum and vector-modulator feedback. At the 
core of this calculation is the calculation of the average difference 
voltage vector ijijj VvVcav ,,

)
− , which is the basic signal for the vector-

sum feedback. In fact, the difference signal between nominal field and 

measured field, ( ){ }
ljijijj GVvVcav ×− ,,

)
, also needs to be averaged over 

the module (using the dimsum.m routine) in the case of the vector-
sum control. The effect of the vector-modulator is accounted for in the 
complex attenuation Aps. This complex factor is calculated in the 
dophaseloop.m routine. The individual cavity attenuation aj is also 
multiplied to SVfwd.  

 
The voltage one actually gets in the cavity for a voltage SVfwd 

coming down the coupler is reduced in the presence of detuning (un-
matched cavity impedance) and coupling loss. As is explained in 
appendix B the forward voltage signal needs to be multiplied with an 
attenuation and a phase-factor, (Eq. 4-13), in this case. Note the 
asterisk to Vfwd*, needed because the definitions of the forward wave 
voltage in Eq. (4-13) and (4-14) differ slightly. Vfwd in Eq. (4-14) will 
receive the factor in the parenthesis when inserted in Eq. (4-11). 
Strictly speaking the set voltage SVfwd is only reached in the cavity 
after a time t>τf (in the ideally tuned case). The physics on which Eq. 
(4-13) is based is explained in appendix B. 
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Also included in Eq. (4-14) is the reflection from the cavity to the 

vector-modulator (the second term in the parenthesis in the first line 
of Eq. 4-14). The reflection arises from the attempt of the vector-
modulator to change the field in the cavity by the amount 
( )ijij SVfwdV ,, −
)

. The reactive power Rps, which is calculated also in 

dophasellop.m, is the reflected power related to the sinus of (half of) 
the phase-difference between the reflected signals returning into the 
two branches of the phase-shifter. This reflection is sent back to the 
cavity, where reflection happens again. Given the many RF periods 
within a time step this term becomes a converging geometrical series 
Rps/(1-Rps). This behavior would not occur if the phase-shifter had an 
additional circulator between phase-shifter and cavity.  

 
Eq. (4-14) summarizes the forward voltage calculation, where 

ijj vVcav ,  is the set-field in the cavities. The exponential factor from Eq. 

(4-13) will be added in the program to Vfwd in Eq. (4-11). The 
normalized fill function is included here because the vector-sum 
control is also active during the filling. jj rQL2  is the conversion factor, 

converting Sfwd into a voltage (SVfwd). More details on the vector-
sum contribution can be found in section 4.8. More details on the 
phase-shifter contribution can be found in section 4.9.  
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                        (4-14) 
 
The output parameters CDrive and CForwd contain the relevant 

components of the expressions above (components in square 
brackets) and can therefore be used to reconstruct the control signals 
and forward power. 
 

SVfwdj,i=CForwdj,i(MV/(Ω)1/2) x (Apsj, x aj x (2QLjrj)1/2 
 
 

Vfwdj,i=2w12j/(w12j-idwj,i) x CDrivej,i(MV) 
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The forward power (in kW) that the klystron needs to supply can be 
calculated from (CForwd2) x 109. The actual forward wave voltage 
change happening in the cavity at each time is: 
 

∆Vfwdj,i(MV)=(2 x Vfwdj,I x e-(w12j-i∆wj,i)) / (1-∆wj/w12j) . 
 
Note that one can calculate the forward power actually delivered 

from the klystron with (CForwd2) x 109 because of the presence of 
feedback. In reality the attenuation due to detuning and coupling loss 
would be pre-compensated by the klystron, by increasing the output 
power by the respective factor (and this would improve the feed-
forward component). This step was not explicitly included in 
S.C.R.E.A.M. Note, however, that the feedback system will notice 
during the next time step that less power than needed has actually 
reached the cavity because of detuning and coupling loss (see Eq. 4-
13 for the voltage reduction factor). Therefore the feedback signal will 
be bigger by the respective amount in the next time step. Note that 
CForwd also includes the gain factor of the vector-sum control. 
Similarly as with the attenuation due to detuning and coupling loss the 
feedback circuit automatically regulates the input power and voltage to 
the desired level and therefore corrects for the gain factor by reducing 
the control signal before amplification. If the control system works 
properly the power provided by the klystron after filling should match 
the power removed by the beam (for zero detuning). This is a “sanity-
check” for the forward power signal.  

 
The SimulateField.m calls dophaseloop.m after completing the 

calculation of (Eq. 4-14). 
 
 

Miscellaneous 
 
In the context of the TESLA R&D, fast (Piezo-) and slow (blade-) 

tuners were developed that successfully compensated for microphonics 
and Lorentz-force detuning in the TTF linac. These are NOT 
implemented in this program. The program assumes that the slow 
tuner successfully compensates for the cavity detuning during cool-
down. The Lorentz-force detuning compensation just consists in 
guessing the total detuning at full field and feed-forward correcting for 
it with a constant pre-detuning of the cavity. A Piezo-tuner could be 
easily simulated in the program by reducing the actual Lorentz-force 
detuning constants (Cavities.KLorentz).  
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Save 
 
As the final procedure SimulateField.m reduces the number of 

columns (=number of bunches) of all fields in the cr structure by the 
Downsample parameter from the General field (i.e. only every 
Downsampleth time step is saved). Since all cavity properties, such as 
forward power and feedback, detuning, etc,.. evolve slower than the 
time-step the calculation of the full array is necessary. The down-
sampling can only be done after the fact. NrunxNfiles is the total 
number of pulses simulated. The loops over Nrun and Nfiles are 
implemented in scream.m. The procedures used to reduce the 
number of data after NrunxNfiles runs are discussed there.  

 

4.7 detuning.m 
 
The detuning routine calculates the cavity Lorentz-force detuning in 

each cavity at every time step from the cavity fields in the preceding 
time step. It is called for each time steps of an RF pulse by 
SimulateField.m. In the function call it receives the accelerating 
voltage in the cavities of the preceding time step ( 1−ijV ,

)
), the frequency 

change due to detuning in the preceding time step (∆ωj,i), the time 
step (∆t) and the current Lorentz-detuning constant of each cavity 
(KLj). The Lorentzforce detuning constants for each cavity, KLj, are 
determined once in the input, and varied randomly with the relative 
Lorentz-detuning factor, ∆KLj, once every file (in scream.m). The 
Lorentzforce detuning is not believed to change once the accelerator is 
built. The KL constants are therefore fixed for all “runs” within a “file” 
(more in the discussion of scream.m). It returns the frequency 
change due to Lorentzforce detuning ∆ωj,i in each cavity at timestep i. 
The output field cr.dw contains the total detuning (as given in (Eq. 4-
4)). 

 
The mechanical rigidity of the cavity delays the change of frequency 

in the cavity. Therefore detuning of the cavity is characterized by the 
time constant τc. Although the system has many mechanical 
resonance frequencies, the process is described well enough with only 
one time constant. This time constant is defined in the detuning.m 
routine and was chosen to be 300 µs 3. Eq. (4-15) gives the formula 
used to describe the frequency change of the cavity due to Lorentz-
force detuning: 

                                                 
3 V. Ayvazyan, S. Simrock, “Dynamic Lorentz Force Detuning Studies in TESLA Cavities”, presented at 
the European Particle Accelerator Conference 2004, Lucerne, Switzerland, July 2004 
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Figure 4-10: Response function to step calculated with Eq. (4-15). 

 
where the ∆t/τc factor dampens the frequency response very much like 
a low-pass filter. When a sudden electric field step is applied to the 
cavity the detuning first is negligible (a ∆t/τc fraction of the prescribed 
KL). After a time t~τc, however, the detuning converges to the 
prescribed (DC) value. Fig. 4-10 shows the response function 
calculated with Eq. (4-15) for a step-function excitation to an arbitrary 
DC amplitude of 1. The approach function is exponential. 

 
The Lorentz-detuning factor for each cavity KLj is re-calculated for 

every “file” in scream.m with the help of the MATLAB randn function 
(Eq. 4-16). 
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The initial values of KLj are those given in the input 
(Cavities.KLorentz). Detuning.m also includes a provision for the case 
in which no KL is defined in the input. KLj=-1Hz/(MV)2 is assumed in 
this case. 
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4.8 dimsum.c 
 
At the klystron level the phase and amplitude of the RF signal is 

regulated using vector-sum regulation. The vector-sum regulation 
consists in summing the measured complex field vectors from all 
cavities within an RF unit (=driven by one klystron), measure its 
amplitude and phase with respect to some set-value and derive a 
control signal that will, as best as possible, drive the cavity field to the 
set phase and amplitude. Fig. 4-11 shows a schematic of the 
DESY/TTF vector sum control module. The phase and amplitude 
measurement is done after mixing with a signal with a slightly different 
frequency. The measurements can then be done on the lower beat 
frequency signal. S.C.R.E.A.M assumes that the feedback delay is 1 
µsec. This is actually optimistic – the TTF DSP system has a total 
processing time of ~4 µsec. Future, FPGA based systems promise to 
reach the 1 µsec mark, however. 

 
The actual field amplitude is usually complex and thus includes 

information about the cavity detuning (cavity phase-factor). The 
program assumes that the RF system phase is zero and therefore the 
correction aims at restoring zero phase. In a real (proton) linac the 
synchronous phase has to be determined for every cavity separately 
using beam-loading. The so measured values (which also include cable 
delays) are stored in the set-table and subtracted from the phase- 
signal. The set-value in S.C.R.E.A.M, Vcav, is real, so the phase factor  

 

 
Figure 4-11: Schematic of vector-sum control in DESY/TTF. 
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of the difference contains the entire cavity phase shift as a result of 
detuning. The difference signal is redirected toward the input after 
multiplication with a proportional gain G and a cavity attenuation 
factor a, both defined in the input. The vector-sum control process is 
described entirely with Eq. (4-14), where VFwd is the forward voltage, 
and ijj vVcav ,  is the set-field in the cavities. Note that the actual power 

that needs to be supplied to achieve a desired voltage is larger by a 
certain factor (see first line in Eq. (4-14) to take into account the fact 
that the cavity is detuned (as well as coupling loss). The derivation of 
these factors is given in appendix B. As discussed before in the context 
of the forward power, the feedback system automatically takes care of 
this issue. 

 
Since vector-sum regulation is done at the klystron level, all the 

relevant parameters (gain, attenuation, difference signal) need to be 
averaged over the RF module. SimulateField.m uses dimsum.c to 
sum the difference signal over all cavities in each module and to 
determine the optimal feedback response at the klystron level, the 
crucial step in vector-sum control. The dimsum.c routine performs 
partial sums of elements of a (complex) vector passed on to it through 
the function call. The routine is optimized for fast processing (and 
therefore uses C language).  

 
In particular, dimsum.c is called once every time step i by 

SimulateField.m to sum the amplified difference between (real) set-
field, Vcav and the actual, complex accelerating voltage V

)
 in each 

cavity j belonging to the module l. The voltage difference is divided by 
the conversion factor (2QLr)1/2 to convert it to the square root of 
power. It is multiplied by the feedback gain and divided by the cavity 
attenuation. The routine uses a simplification when applying an 
average of the (proportional) gain of all cavities in each module to 
amplify the difference between the set and the actual field. The real 
and imaginary parts of V

)
, which are passed on to dimsum.c in the 

function call from SimulateField.m, are summed separately. The 
most time consuming part of the routine is related to defining which 
cavities belong to a module. To that end the function call also includes 
the Module vector from the Cavities structure (see discussion of input) 
and the Nmod (= number of modules) variable. Cavities.Module is a 
size Ncav vector that contains the module number to which each 
cavity belongs. This vector is renamed as idxj in dimsum.c. The 
components of this vector are used as the index of a temporary vector, 
SP, which sums all the amplified difference-signals j into the element l, 
where l is the module number. This l-size vector is then augmented 
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back to size j, with all cavities in one module having the same 
difference signal value, the average per module. 

 

4.9 initphaseloop.m  and dophaseloop.m 
 
Dophaseloop.m describes a possible implementation of the fast 

ferrite vector-modulator with the characteristic parameters as defined 
in Phaseloop. The following describes an implementation of phase-
shifters based on an approximation of a proportional-differential (PID) 
regulator. Any other design is also possible (first trials with a time-
optimal regulator were also done but are not discussed further here). 
A disadvantage of the PID regulator is its sensitivity to noise.  
Dophaseloop.m requires prior initialization via initphaseloop.m. The 
initialization script is called by SimulateField.m. 

 
The fast ferrite vector-modulator is made out of two phase-shifters, 

which each act independently on one half of the forward power. Fig. 4-
12 shows a schematic of a possible implementation of the vector-
modulator. It consists of two ferrite loaded stubs with a bias coil for 
each. The phase-shift in each branch is set via its bias-field. Eq. (4-17) 
describes the effect of the vector-modulator on the forward power. If 
the two branches produce the same phase-shift (ψ1= ψ2), the 
attenuation is 1 (the reflection is zero) and the effect consists only of a 
phase-shift (ψ1+ ψ2)/2. If the phase-shifts in the two branches are not 
the same, reflection occurs, and the forward signal is attenuated with 
by cos((ψ1- ψ2)/2). In other words the phase-shift, φps, depends on 
the average phase and the attenuation A depends on the phase-
difference. Note that (4-17) also includes ψ0, the initial phase-shift 
before the effect of the biased ferrite (e.g. provided by an extra-length 
of wave-guide). This initial phase-shift allows the phase-shifter to 
operate at a different point than zero (at the expense of additional 
signal attenuation, however). The initial phase-shift is assumed to be 
symmetrically distributed (ψ1→ ψ1+ ψ0, ψ2→ ψ2- ψ0) such as to not 
cause any residual phase-shift.  
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The model implementation of the vector-modulator in the 

dophaseloop.m script is strongly simplified (see block-diagram in Fig. 



 S.C.R.E.A.M – program documentation 

 4-36

4-12). The elements contained are: -1- the PID regulator, -2- a 
saturation condition reflecting the limited “range” of the phase-shifter 
and –3- a (low-pass) filter element that takes into account the finite 
reaction time of the phase-shifter (mainly due to the inductance of the 
bias coils and the voltage limitation of the bias coil power-supplies).  

 
After initialization, dophaseloop.m calculates the correction signal, 

Eq. 4-18. The to be corrected error signal igpsV ,

)
∆ is the difference 

between the set field and the actual field in each cavity g (g because 
only the cavities g have a vector-modulator) after subtraction of the 
correction provided by vector-sum control. Therefore the second term 
in Eq. 4-18 is the average difference signal over the module l. This 
prevents the phase-shifters from working against the vector-sum 
control. The modulus of igpsV ,

)
∆  is the amplitude error and the 

imaginary phase angle the phase error.  
 

 
PID L/RPID L/R

 
Figure 4-12: Schematic of fast ferrite vector-modulators for the Fermilab PD (wave-guide type). 
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Below is a step-by-step discussion of the effect of the different 

phase-shifter components listed above on the correction signal.  
 
The two signals S1 and S2 refer to the amplitude and the phase 

correction. Eq. 4-19 describes the PID regulator, with the proportional 
(first term) and differential (second term) components. The weighting 
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between the components does not vary from before to after filling. 
Usually the differential component is chosen to be much stronger than 
the proportional gain. This ensures that the phase-shifter reacts faster. 
The respective input parameters in Phaseloop are AmpGain (GAps) and 
AmpDGain (DAps) for the amplitudes (S1) Gain (Gpps) and DGain 
(Dpps) for the phases (S2).  Eq. (4-19a) describes signal 1 
(amplitude) and (Eq. 4-19b) the phase signal. Note that Eq. (4-19) is 
slightly inaccurate – it should in fact calculate the amplitude and phase 
from the modulus and the phase of the complex control signal. At a 
small phase, however, the real and imaginary parts do the job as well 
(because φ~sinφ), and faster. Fig. 4-13 shows the PID response 
function to a control signal φps=10°, A=1. The proportional part is 
negligible against the differential part (spike) for the set of gains 
chosen.  
 
  ( ) ( ) ( )relDApspsVpsVGApspsVS gigiggigig 11 −∆−∆ℜ+∆ℜ= ,,,,

)))
             (4-19a) 

 
  ( ) ( ) ( )radDppspsVpsVGppspsVS igiggigig 12 −∆−∆ℑ+∆ℑ= ,,,,

)))
               (4-19b) 
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Figure 4-13: PID-signal as response to a 10° phase signal on the vector-modulator input. No 
amplitude attenuation signal (S1=0). (GAps=0.04, DAps=200, Gpps=0.2, Dpps=1000)  

 
Eqs. (4-20 & 4-21) describe the calculation of the phase-shifts 

required in each branch, PS1 (ψ1) and PS2 (ψ2) to deliver the 
amplitude and phase correction. Here PS1 and PS2 stand for the 
phase-shifts (in rad) provided by the two different branches of the 
vector-modulator. Each branch takes care of part of the requested 
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phase-shift and attenuation. The amount of phase-shift needed in each 
branch of the phase-shifter for a given total phase shift, φps, and 
attenuation, Aps, can easily be calculated: 

 
ψ1=φps+arccos(Aps), ψ2=φps-arccos(Aps), 

 
φps, the total phase-shift is (1/2(ψ1+ ψ2)) and Aps the (relative) 
amplitude is cos(1/2(ψ1- ψ2)). That does not include the effect of the 
working point ψ0. The best working point (because of fastest slew 
rate) is ψ0=±45° in branches 1 and 2 (albeit reducing the transmitted 
power by one half). No net phase-shift is therefore added as a result of 
ψ0. Eq.(4-20) implements the above, including the working point ψ0. 
Eq. (4-20) also includes a saturation condition. When the angle 
becomes larger than ψsat, the phase-shifts PS1 or PS2 cannot follow.  
This is the result of the use of the arctan function, which saturates at 
90° when the argument diverges.   
 

It also needs to be noted that Eq. (4-20) mixes the attenuation and 
phase signals S1 and S2. If ψ0=0° the amplitude signal is some value 
close to zero (and not close to one as is Aps). As with the vector-sum 
control feedback discussed in 4.8, this is allowable since Eq. (4-20) in 
fact is the part of a feedback loop, which auto-corrects for “wrong” 
start values. The mixing of the feedback loop and the real physics 
description can give rise to confusion. In the case in which ψ0≠0° the 
amplitude working point shifts from zero to ψ0 (+S1). This is taken 
into account with the 1/sin(ψ0) factor.       
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Fig. 4-14 shows an exemplary implementation of Eq. (4-20) Fig. 4-15 

shows the effect of the arctan saturation function in Eq. (4-20).  
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Figure 4-14: Saturator response to a 10° phase signal after transformation by the PID. Obviously 
ψsat is 45° in this example. No amplitude attenuation signal (S1=0). (GAps=0.04, DAps=200, 
Gpps=0.2, Dpps=1000)  
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Figure 4-15: Saturation function as implemented in Eq. (4-20). 

 
Eq. (4-21) describes the low pass filter element that implements the 

finite reaction time of the phase-shifter (as a result of the solenoid 
inductance and the power supply limitations). The phase-shifter signal 
is integrated and the actual signal only provides an increment of 
timestep/τps to the total signal. τps, which is given in 
General.PhaseTau, is the phase-shifter time constant. PS1’ and PS2’ 
are also similar to the output phase-shifts sh1 and sh2 of the two 
phase-shifters (in rad). 
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Fig. 4-16 shows the slowed response of the vector-modulator as a 
result of the L/R time constant as implemented in Eq. (4-21). 
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Figure 4-16: Effect of the L/R time constant on the response of the vector-modulator to a 10° 
phase-shift signal. (τps=150 µsec).  

 
The main dophaseloop.m output, however, is CFwdpl (or Aps) the 

complex factors (relative to 1) with which the forward power from the 
klystron needs to be multiplied to simulate the phase-shifter 
attenuation (and phase-shift). Those factors are calculated with Eq. (4-
22). 

   

( )
( ) ( )[ ] ( )releeAps igig shishi

ig
0201

1 02
1 ψψ

ψ
+−

+ += ,,

cos,             (4-22) 

 
 

( ) ( ) ( )relePSGRRps gPSi
iggig

12
1 1 ,'

,, 'sin⋅=+                     (4-23) 

 
 

Eq. (4-22) “cheats” in the sense that the attenuation due to 
operation at ±ψ0 is removed from the reported attenuation. Note that, 
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apart from the removal of ψ0, Eq. (4-22) corresponds exactly to Eq. 
(4-17), but written in a more “intuitive” way (the two exponential 
factors describe exactly what the two phase-shifter branches actually 
do!). The complex Aps and Rps are returned to SimulateField.m and 
used in Eq. (4-14). Note that if ψ0≠0 the modulus of CFwdpl can be 
larger than 1. In this case the increase of power from the phase-shifter 
comes from a reduction of the offset power reflection due to the 
chosen working point.   

 
Fig. 4-17 shows the phase-shifter response calculated with Eqs. (4-

19) - (4-22) for a step function control signal (demanding 10 deg at 
t=300 µsec). S1 was set to zero in this calculation, thus no attenuation 
was included in the control signal. The jump at 300 µsec is related to 
the strong differential gain (here 1000). It takes the phase-shifter 
~650 µsec to deliver the requested phase-shift (the time constant 
assumed was 150 µsec). The strong differential gain does partly 
overcome the time-constant limitation of the phase-shifter. The signal 
attenuation shown is ~1% (-0.1dB), very close to zero. It is a result 
from moving the phase away from the working point. As mentioned 
above the attenuation due to the π/4 working point is not taken into 
account (this would add a constant offset of –3dB to the amplitude 
signal in Fig. 4-17). Besides the saturation of the control signal using 
the arctan function, there is no further limitation, such as for instance 
on the voltage of the power supply for the phase-shifter bias magnets. 
As mentioned before the as implemented vector-modulator does not 
include a circulator between it and the cavity. 
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Figure 4-17: PID-based vector-modulator response as calculated with dophaseloop.m.  
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5 EXAMPLE – FERMILAB PROTON DRIVER 
 

5.1 Fermilab Proton Driver  
 

The proton-driver (PD) is a proposed accelerator at Fermilab that 
provides high power H- beam at 8 GeV. Although the proton driver is a 
multi-mission machine its primary purpose is to produce neutrinos. Its 
other potential uses include the proton and antiproton production for 
the Tevatron and the Fermilab fixed target program as well as an X-
ray FEL, an injector into a linear collider or a neutrino factory (muon 
collider) and a spallation neutron source. Besides very large beam 
power (2 MW @ 8 GeV), its multi-mission purpose, are the primary 
features of the proton driver. 

 
The following will briefly discuss the result of a simulation of the 

proton driver to document the capabilities of the S.C.R.E.A.M code. 
Fig. 5-1 shows the layout of the proton driver linac as implemented in 
the program. Only the superconducting section (E= 87-8000 MeV) was 
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805 MHz
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Figure 5-1: Layout of the proposed Fermilab proton driver (2 MW @ 8 GeV baseline) as 
simulated with S.C.R.E.A.M. below (G.W. Foster, 2003 Proton Driver Design study - from 
http://tdserver1.fnal.gov/project/8GeVLinac/DesignStudy/ ). 
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implemented in S.C.R.E.A.M. The linac consists of two βc=0.47 cryo-
modules, three cryo-modules with βc =0.61 cavities, seven cryo-
modules with βc=0.81 cavities and 36 cryo-modules with βc=1 cavities. 
All βc<1 cavities are elliptical with six cells, very much like those 
proposed for the RIA accelerator by MSU. The βc=1 cavities are 
elliptical nine-cell cavities, very much like those developed for the 
TESLA program. All cryo-modules hold eight cavities. There are eleven 
klystrons (each counted as a “RF-module” in the program) in the βc<1 
section and 24 RF modules (a one klystron each) in the βc=1 section. 
The program therefore includes 35 modules. The βc<1 section operates 
at the SNS frequency (805 MHz), the βc=1 section at a “TESLA-like” 
frequency (1207 MHz). The total cavity count is 384. This particular PD 
design is one of two options currently under consideration. 

 

5.2  S.C.R.E.A.M input  
 
The following plots represent the major input parameters. The first 

set of plots describes the components of the linac (as shown in Fig. 5-
1). Table 5-1 contains the main scalar parameters for the simulation 
discussed here. For details consult chapter 3. 

 
Table 5-1: Constant input parameters 

for S.C.R.E.A.M Proton-Driver 
simulation. 

Field Value 
Nfiles 1 
Nruns 1 
doPhaseloop 1 (true) 
Stepsize 1 µs 
Downsample 1 
Filltime 500 µs 
Beamtime 800 µs 
PhaseTau 150 µs 
Ncav 384 
Nm 35 
Ng 96 
Mode π 
GapLambda 0.5 
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The optimum loaded Q (QL) in the cavity, i.e. the coupling that gives 
perfect matching of the cavity circuit in the presence of beam is 
calculated from the expcted beam-loading (see Eq. 5-1). In the βb<1 
section, the cavity QL used in the calculation differs slightly from the 
design (or optimum), as shown in the figure above and as given in Eq. 
(5-1). In driving the cavity slightly off the optimum coupling condition 
(and modulating the supplied power by a similar factor), the 
differences in beam-loading between the cavities in a module can be 
partially compensated for. The off-optimum external Q also slows 
down the cavity filling. Therefore the filling starts earlier in the βb<1 
sectors. The corresponding cavity forward power modulation is 
obtained through the Attenuation (a) factor. 
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For the same reason the nominal set field in the 16 cavities of the first 
module was modulated with 1/(T’sync)0.5-0.8.  
 

Some of the linac parameters shown in the above plots are the result 
of extensive design efforts, such as the number of cavities per module, 
the number of cavities of a particular βc, the number of cells in each 
particular cavity and their shunt impedance. We therefore cannot 
discuss these choices in detail here. 

 
The Lorentz-force detuning and microphonics characteristics in the 

βc=1 section are those measured in the TTF linac. For the βc<1 
cavities the characteristics measured in the SNS cavities were used as 
a basis. As a general trend the Lorentz-force detuning constants 
increase in lower frequency cavity designs. Since the accelerating 
fields also decreases in these cases the overall detuning tends to 
remain more or less the same for the entire linac. The same is true for 
micro-phonics. The feed-forward pre-detuning dw was calculated from 
the square of the nominal cavitiy field (accelerating voltage) and the 
input Lorentz-detuning constants KL0.    

 
The beam phase-advance settings were chosen based on those 

proposed for SNS operation. 
 
The second input structure is Phaseloop. The Phaseloop parameters 

only apply to the 96 cavities of the β<1 section where fast vector-
modulators are currently being proposed. The vector-modulator 
parmeters used are the proportional and differential phase and 
ampitude gains. They are shown in the plots below. All other 
parameters, such as the phaseshifter operating point ψ0 and the 
phase-shifter saturation ψsat, are hard-coded into initphaseloop.m 
(and they are listed in Table 5-2). 
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Table 5-2: Constant input parameters 
for simulation of the Phaseshifter in 
the S.C.R.E.A.M Proton-Driver 
simulation. 

Field symbol value 
PLSat ψsat π/4 
PLSatn 2ψsat/π 1/2 
PLIni ψ0 π/4 
PLsin sin(ψ0) sin(PLIni) 
PLTau τps 150 µsec 
PLdel PLdel O µsec 
PLIna cos(ψ0) cos(PLIni) 

 
 
The third set of plots describes the beam parameters. In particular 

the distribution of the macro-particles in phase-space at injection is 
shown. Three macro-particles were removed from the distribution (at 
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(-(7-9) sigma in tini) because they tended to get lost during 
acceleration. The particles simulated are protons (charge 1, mass 938 
MeV). The parameters are given in the plot titles. For details consult 
chapter 3. The 69 macro-particles contain a total of 1.5x1011 particles. 
The total pulse current therefore is 1.5x1011 particles per mirco-
second, or 25 mA. 

 
 

Table 5-3: Constant input parameters for the 
simulation of the beam injection jitter in the 
S.C.R.E.A.M PD simulation. 

Field value 
Input time O sec 
Input energy 87 MeV 
Efluc 50 keV 
Tfluc 5.8 ps 
Ifluc 1% 
Ecoherent 50 keV 
Tcoherent 5.8 ps 
Icoherent 1% 
Energy Sigma 60 keV 
Time Sigma 9.9 psec 
Energy Sigma 60 keV 
Sigma Step 1 
Nbranch 8 
Nσ 9 
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5.3  PreRun Calculation  
 
The results of the tracking calculation of the synchronous particle and 

synchronous bunch are presented in the following plots. These 
calculations are performed in the PreRun.m routine. They assume the 
nominal accelerating voltage in the cavities, neglecting detuning and 
beam-loading effects. Of particular interest is the phase-space 
distribution of the synchronous bunch. The synchronous bunch has the 
synchronous particle in its center. There are some macro-particles, 
which appear out of the acceptable range of the energy and arrival 
time distribution at the end of the linac. These macro-particles are 
considered to be lost. These are mostly particles, which lag behind the 
synchronous particle in time and have lower energy. The longitudinal 
acceptance of the linac appears to be truncated on the side of later 
injection arrival time, presumably as a result of the negative phase 
advance of the beam. Efforts were made to reduce the loss fraction 
and this is the reason why the injection macro-particle distribution is 
not entirely symmetric (see figures above).  

 
The following shows the transit time factor, energy gain and phase of 
the synchronous particle as calculated in Prerun. Note that the beam 
phase advance is included in the calculation. Cavity detuning is not 
included. Also shown is the phase space distribution for the macro-
particles of the synchronous bunch at the start and end of the linac. 
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5.4  Full Run - One Pulse 
 
Injection Jitter 

 
With a beam time of 800 µsec and the 1 µsec step-size the total 

number of bunches simulated during a pulse is 800. The plots below 
show a possible random distribution of the bunch centroid start energy 
and start time for all these bunches. These distributions were 
calculated by SimulateField.m. As discussed in 4.6.), the bunch 
centroid E/t/I at injection is shifted with a coherent (fixed for all 
bunches) and an incoherent (varying from bunch to bunch) 
component, both calculated with the MATLAB randn function on the 
basis of the given distribution widths. The coherent contributions in the 
case shown were -21.6 keV energy offset (in addition to the 87 MeV 
start energy), -9.66 psec time-offset (from 0) and a +0.1253% charge 
increase. The plots below show the incoherent bunch centroid shifts for 
the 800 bunches in E/t and I. The last figure shows the E/t injection 
distribution for all 800x69 macro-particles simulated in one pulse. The 
distribution also includes the coherent jitter contributions as well as 
the E0/t0/I0 values defined in the Bunches input. The above is for one 
pulse and just an example. The calculation results shown below may 
very well vary for different pulses (the distribution width, however, 
stays the same). 
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Detuning 

 
Another source of beam jitter is the cavity detuning as a result of 

Lorentz-forces and micro-phonics. The figure below shows an example 
of the random variation of the slow micro-phonics detuning in all 
cavities during one pulse. The fast microphonics variation, which is 
calculated from a similar distribution, is added to the spectrum below 
during every time step. The other plot shows the Lorentz-detuning 
calculated in all cavities at nominal field, clearly showing the fixed and 
random components. Unlike the micro-phonics distribution, the Lorentz-
detuning distribution is invariant throughout the pulse. It is also 
changing in time, however, as the field amplitude changes in the 
cavities. 
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Shown below is the detuning frequency (Hz) in all βc=1 cavities 

during a pulse (output parameter cavpre.dw). The estimated Lorentz-
detuning in the βc=1 section at 25 MV is -600 Hz. The cavity detuning 
continues after filling (complete after 500 µsec) because of the 
mechanical inertia of the cavity (see discussion in section 4/detuning). 
The Lorentz pre-setting is ~4000/(2π) Hz. In the βc=0.47 group the 
estimated Lorentz-detuning at ~7MV=-600Hz. In the βc=0.61 group 
the estimated Lorentz-detuning at ~10MV=-600Hz. In the βc=0.81 
group the estimated Lorentz-detuning at ~18 MV = -300 Hz. The fine 
ripple is (fast and slow) microphonics detuning (10 Hz, HWHM). The 
figure below shows the detuning profile for all cavities in the βc=1 
sector. The fact that the detuning becomes almost zero toward the end 
of the pulse indicates that the pre-detuning works successfully. Note 
the spread in the pre-detuning frequencies at t=0! This spread is 
introduced in the scream.m script to take into account the random  
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variation of the detuning constants between cavities. This refinement 
in the pre-detuning is the reason why the spread is reduced at the end 
of the pulse.  

 
 

Run without Phaseloop 
 
The following shows an example of a pulse simulation without phase-

shifters. As is obvious from the graph below, which shows the beam 
current (CCur, amplitude and phase) in the last cavity, the beam does 
not survive longer than ~50 micro-sec in this condition. The beam 
phase starts to increase with respect to the synchronous phase (per 
definition zero), and the current amplitude starts to drop from the 
nominal 25 mA. The strong phase oscillations after the beam is lost 
are the result of numerical noise (division through almost zero 
amplitude).  

 
The CCur field constains the sum of the macro-particle currents 

multiplied with the transit time factors for each macro-particle and a 
phase-factor containing the phase difference froim each macro-particle 
to the synchronous particle. The CCur array has the dimension 
NcavxNb. The amplitude of CCur therefore essentially is the bunch 
current for bunches that are running close to the synchronous bunch. 
When strong deviations from the synchronous phase occur the phase 
angle increases and the amplitude of CCur drops because of the 
reduction in transit-time factor. The abovce shown CCur function 
therefore indicates how well the matching of the bunch and 
synchronous phase is.     
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The cause of the current drop is field instability in the low beta 
modules. Shown below is the field amplitude in all cavities as a 
function of time. On the left are the set-values, on the right, the actual 
values. The actual amplitudes depart from the set-values, as a result 
of beam-loading and detuning as well as the insufficient regulation 
ability by the vector-sum control system. In the plot below only the 
βc=1 section with voltages ~25 MV are well behaved. The fields are 
unstable in the βc<1 sections, and most notably in the βc=0.47 
module.  

 

 
 
Shown below are the amplitudes and phases (CField) in the first 16 

cavities (first module) as function of time. The plot clearly shows that 
the cavity fields start to depart from nominal after ~50 µsecs of beam 
loading, in some cases even earlier. The vector-sum feedback control  
   

 
 



 S.C.R.E.A.M program guide 

   5-16

system is not capable of stabilizing the fields sufficiently. Note that 
reduction in cavity voltage as a result of a phase change α goes with 
cos(α), thus 20° corresponds to ~10% of loss in amplitude.   

 
 
The following figures show the phases of the cavity fields. On the left 

are the actual phases, on the right the phases as averaged over the 
modules1. These plots use the same scale. As expected the average 
over the module is better behaved by a relative factor G (=feedback, 
~25). The next set of figures shows the cavities in the βc=1 sector. 
The beam is stiff enough in this sector so that variations in beam-
loading, detuning, etc.. do not induce significant phase oscillations.  

 

 
 

Below are the cavities in βc<1 sectors, showing again the instability 
discussed above. The instability even appears at the module level. 
 

The location of the linac where strong cavity phase-fluctuations occur 
is probably the region where the loss of beam originates. Using the 
plot below, which shows the phase difference from the synchronous 
phase (angle(CField)) in all cavities at one particular instant in time 
(50 µsec after filling), one can argue that the instability originates in 
the first 50 cavities, encompassing the βc=0.47, βc=0.61 sections and 
some cavities from the βc=0.81 sector. 
 

                                                 
1 MATLAB code used to obtain average over module:  
hold 
for n=13:35, 
plot((180/pi*sum(angle(cavpre.CField(Mod(n).Cavities,:)))/(Mod(n).N))'); 
end 
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Vector-sum Control 
 
The following discusses the dynamics, and in particular the optimal 

gain settings of the vector-sum control. Since the vector-sum control 
is particularly important in the βc=1 section of the PD, the βc<1 
section of the PD linac was removed (Eini0=1336.85 MeV, tini0=0sec) 
and the buinches were all made synchronous (Efluc=Ecoh=tfluc-
tcoh=0) for the purpose of the calculations discussed below. Also the 
phase-space distribution of the synchronous bunch was strongly 
compressed (σt0=1psec,σE0=1keV). No vector-modulators were 
implemented. 
 



 S.C.R.E.A.M program guide 

   5-18

Shown below is the effect of the feedback gain on the field and phase 
of cavity #126 (in module 11, which contains cavities 121-132). To 
obtain this plot a special version of scream.m was written, including a 
loop over the cavity gains2. For insufficient gain the fields and phases 
are very different from their respective set-values. Above the 
maximum gain shown in these plots the program becomes unstable. 
 

 
 

The following figures show the cavity fields and phases in all cavities 
in the 11th βc=1 module, calculated with the most optimal gain (16.5). 
We observe that the cavities at the ends of the module have positive 
amplitude error with beam, cavity in the center come close to the set 
value, while the other cavities inside the module typically have 
negative amplitude error.  

 
The TTF in this module, shown below also, indicates an increasing 

beam-loading along the module. The TTF is definitely reflected in the 
bunch energy-error (below). There are no differences between the 
beam phases (w. respect to the synchronous phase) in the different 
cavities. of the module. This beam-phase plot is essentially a short 
section of the “synchrotron” phase plot discussed in further detail 
later.  Also an energy error plot for the entire linac will be shown later.  

 
 
 

                                                 
2 for kf=2:20 
   SimCav          = Cavities; 
  SimCav.Feedback = SimCav.Feedback/kf; 
   [cavresult(kf),beamresult(kf)]=SimulateField(SimCav,Mod,Bunches,General,Phaseloop); 
  end 
cr=cavresult; 
br=beamresult; 



 S.C.R.E.A.M program guide 

   5-19
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Since vector-sum control works on the average field in the module it 
is of interest to verify how successfully it operates on the module level. 
A special post-processing code was used to compute the average 
complex field-vectors in the module3. As shown in the plot, field 
(phase) are controlled to within a few % (<1°) at the module level. 
The amplitude set value is the same in all the modules shown. The 
perturbation of the cavity phase at the start of beam loading is clearly 
visible. Toward the end of the pulse the feedback mechanism brings 
the phase almost back to the synchronous phase. 
 
 

 
 

Shown below is the klystron forward power (amplitude and phase, 
per cavity). It is calculated from 1e+9 CForwd^2. Strictly speaking it 
is not the forward power as defined as the power entering the cavity 
coupler, since it does not include the reflected power. During beam 
loading, however, the reflection is negligible and the shown plots 
indeed show the forward power from the klystron. Also included is the 
setvalue (feed-forward component) SForwd. The klystron power during 
beam loading is as expected (power transferred to the beam is 
~25MVx25mA=625kW). The phase signal (right plot) clealy shows the 
Lorentz-force detuning, with the feedback system aiming at matching 
the klystron phase to the pre-detuned cavity phase (Lorentz-pre- 

                                                 
3 MFM=zeros(6,1300); 
  for i=1:4:24, 

MFM(i,:)=zeros(1,1300); 
for k=1:12, 

MFM(i,:)=MFM(i,:)+cr(3).CField((i-1)*12+k,:); 
end 

 end 
MFM=MFM/12; 
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detuning) during filling. Since the Lorentz-force detuning diminishes 
during filling the feedback finally drives the klystron phase back to 
smaller values. The expected phase change is arctan(∆ω/ω12)~10°. The 
feed-forward phase setting is zero. As the beam arrives the RF phase 
suddenly jumps by ~-10° to take into account the beam phase-
advance (klystron attempts to supply the power at the right phase). 

 
A similar calculation with injection jitter (as defined in the discussion 

of the input to this simulation, including the random variations) shows 
similar, albeit slightly worse, results. Shown below are the amplitude 
and phase in cavity 126 (module 11) for different gain settings. In this 
case the highest possible gain setting (17.5) is less successful in 
aligning the actual and set-amplitudes and phases. Also the cavity-to-
cavity amplitude and phase-variations within the module, as shown 
below, are less constrained than in the case with minimal injection 
jitter.  
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The control signal used by the vector-sum regulation is proportional 
to the difference between the actual cavity voltage and the set-
voltage. Since the vector-sum control averages all signals over the 
module there is in fact only one signal per module. Furthermore the 
signal is multiplied with a gain. The S.C.R.E.A.M output parameter 
CForwd contains the amplified feedback signal as well as the 
feedforward (SForwd) signal. Multiplied with the average conversion 

factor 
ljj rQL2 in module l it becomes an equivalent voltage4. Note, 

however, that the exact amplitude of this voltage is not necessarily 
relevant since it only serves to regulate the cavity voltage to the 
nominal value. Since the cavity voltage in the βc=1 section is 25 MV 
and the beam current discussed here is 25 mA, the square root of the 
forward power (~600 kW with beam) is 25 MV. This is a pure 
coincidence, however! Also shown in the following plots is 

SForwdx
ljj rQL2 , i.e. the feed-forward signal converted to a voltage. 

Ideally the feed-forward voltage should cover most of the voltage that 
needs to be supplied to the cavity. Obviously all calculation results  

  

                                                 
4 MATLAB code for average conversion factor in module: 
FieldFac=sqrt(2*Cavities.Qloaded.*Cavities.Rshunt); 
for i=1:35, 
FieldFacMod(i)=sum(FieldFac(Mod(i).Cavities))/(Mod(i).N); 
end 
for i=1:1300, 
FieldFacModMat(:,i)=FieldFacMod'; 
end 
VForwd=cavpre.CForwd.*FieldFacModMat 
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discussed above do not include the effect of the fast ferrite vector-
modulator. The following discusses a case with vector-modulators in 
the βc<1 sectors. 

 
 

Run with Phaseloop 
 
The following discusses the result of a successful run using vector-

modulators in the βc<1 sectors of the linac. The beam current and 
phase shown below (in the last cavity) indicate a successful run. The 
cavity phases at 50 micro-seconds after the end of filling obviously 
also indicate a much better behaved βc<1 section than before, without 
the vector-modulators. As a result of successful phase-correction in 
the βc <1 sectors, the largest phase-variations now occur in the βc =1 
sector. 

 

No of cavity  
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The plot below shows the phases of the βc<1 cavities at different 
randomly chosen times during the beam pulse, showing that the  
phases are more or less stable throughout the pulse. 

 

 
 
The field amplitudes in the βc<1 cavities are also obviously better 

behaved than in the case without vector-modulators. Shown are the 
amplitudes and phases in all cavities (left) and in the βc<1 cavities 
only (right). The klystron forward power in the βc<1 modules are also 
shown (amplitude left, phase right) together with the set-values. 
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Vector-Modulators 
 

The following shows the phase-shift provided by the two arms of the 
96 phase-shifters at all times during the pulse (cr.sh1 and cr.sh2). 
Except for some outliers the phase signals remain within ±10°. Note, 
however, that the phase-shifter implementation discussed here 
operates at the ideal working point (π/4). In this working point half of 
the klystron power is reflected from the phase-shifter. This is an un-
acceptable situation in a real linac. Better optimized phase-shifter 
gains and better (faster) control elements are required to allow 
operation around the 0° working point. 
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The following shows the phase-shifter angles ψ1 and ψ2 in module 2 
(βc=0.61).  Also shown is the total phaseshift (angle(cr.CFwdpl)). 
 

 

 
 



 S.C.R.E.A.M program guide 

   5-27

The following plot shows the amplitude of the vector-modulator 
control signal (abs(CFwdpl)). The amplitudes can become larger than 
one when the working point ψ0≠0.   

 

 
 

The example below summarizes the effect of the different control 
signals on the cavity phase (in cavity #1, βc=0.47). The dark blue 
curve represents the cavity phase, clearly showing the pre-detuning 
that is gradually removed as Lorentz-force detuning kicks in. The 
vector-sum control (light blue) drives the klystron phase to negative 
values to compensate for the detuning. The fast ferrite vector-
modulator (purple) is doing a similar thing. The resulting cavity phase 
is ~0. The arrival of beam appears in the vector-sum control as a 
pulse. The fact that the feed-forward signal anticipates beam-loading 
can be seen in the vector-sum control signal, which is mostly 
unperturbed by the arrival of the beam. 
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The following discusses a small study of the effect of the phase-
shifter L/R time constant (τps) on the cavity phase-control. Shown 
below is a series of plots documenting the cavity phases for τps 
constants between 150 and 550 µsec. The top plot shows the phase in 
all cavities 50 µsec after beam injection for these different cases. The 
two plots below show the phase at all times during the pulse in the 
first and last (# 96) cavity of the βc<1 sector for the different time 
constants.  

 

 
 

 
 
 
 
Synchrotron Oscillation 
 
The S.C.R.E.A.M simulation also allows determining the synchrotron 

oscillation, i.e. the longitudinal oscillation of the bunch with respect to 
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the synchronous particle. Shown below is the beam-phase 
(Angle(CCur)) for some bunches. This phase is per definition with 
respect to the synchronous phase. The bunch energy error, ECur, 
(with respect to the synchronous bunch), also reflects the synchrotron 
motion. The figures below also beautifully demonstrate the Liouville 
theorem on the conservation of the beam area in phase-space, with 
the phase-oscillation decreasing as the energy amplitude increases. 

 

 
 
 

Beam-Loading 
 

The beam-loading is modulated across the module with the transit 
time factor and vector-sum control can only take care of the mean in 
the module. Shown below is the amplitude of CCur, which clearly 
reveals the modulation with T’ (which is also shown in the plot). The 
beam-loading voltage, shown in the right plot for several bunches is 
calculated with: 

 
∆Vb=simbeam=IFacxCCur=2πxFrequencyxRshuntx∆tx10-6xe-iφ0xCCur, 

 
where the IFac vector had to be augmented to a matrix consisting of 
800 identical column-vectors and the so obtained IFac matrix had to 
be multiplied element-wise with the CCur matrix. 
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Example Case - Conclusions 
 
The simulations discussed above are intended to document the 

capabilities of the S.C.R.E.A.M program to simulate RF control 
strategies in superconducting linacs, such as the Fermilab PD. The PD 
has several specific characteristics, which were addressed in the 
version of S.C.R.E.A.M. discussed here.  These are related –1- to the 
question of RF fan-out and the need for fast ferrite vector-modulators 
and –2- to the intended multi-purpose use of the linac for several 
particle species (H- and electrons).  Both issues require a careful 
weigthing of the cost of different technical solutions to the RF controls 
problem. To reduce the cost of a linac it is, on the one hand, desirable 
to group as many cavity resonators as possible into one RF circuit, 
driven by one klystron – modulator unit. The RF phase and amplitude 
can only be regulated at the output of the klystron and therefore not 
individually for each cavity. Individual phase and amplitude shifters for 
each cavity facilitate the optimization of the linac, but they are 
expensive. Therefore it is desirable to determine the most cost optimal 
compromise between RF fan-out and the number and complexity of 
phase shifters. If different beam species are to be accelerated this 
optimization must include not only intra-pulse control of the RF phase 
and amplitude but also pulse-to-pulse variations. Simulations with 
S.C.R.E.A.M as discussed here already indicate that TTF-style 
vectorsum control is not sufficient to stabilize the cavity fields in the 
βc<1 sections of the PD. In the future further fine-tuning of the control 
algorithms is certainly required to achieve the challenging goals for the 
final momentum spread (<0.1%), amplitude variation (within <±0.8 
dB) and phase variation (<±8 deg). Note that shifting the cavity phase 
by the half-bandwidth correspond to a 45 degrees phase-shift!  
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Shown below is the final beam energy for all 55200 macroparticles 
accelerated in one pulse (69x800) as calculated in the version that 
includes the fast vector-modulators. In fact the plot shows plot(br. 
Time-(prerun.Time(384,1), br.Energy), so the time-axis is relative to 
the time of flight of the synchronous particle. It is clear from the plot 
that the beam energy in the pulse was ~100 MeV higher than nominal 
(and that of the synchronous particle). Some macro-particles bunches 
are lagging behind, producing the tail of the distribution. As shown in 
the histogram below, however, the tail contains only about 5% of the 
macro-particles. The beam loss is obviously even smaller since the lost 
macro-particles are mostly from the fringes of the injection phase-
space and therefore hold much less particles. Note that the linac setup 
was not optimized for minimum beam loss. The histogram was 
produced with special post-processing code5.  

 
 

 
 

 
 
 

                                                 
5 edgesnew(1)=0; 
 for u=2:20, 

edgesnew(u)=7900+u*12.5; 
 end 
 Ehisto=zeros(20,1) 
 for v=1:800, 
  Ehisto=Ehisto+histc(bmpre.Energy(:,v),edgesnew); 
 end 
 bar(Ehisto) 
 bar(Ehisto/sum(Ehisto)) 
 bar(100*Ehisto/sum(Ehisto)) 
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6 APPENDIX A 
 

CALCULATION OF THE TRANSIT TIME FACTOR 
 
The transit time factor is used to relate the peak (or average or any 

other benchmark parameter representing the) accelerating field in the 
cavity to the effective acceleration of a beam in that cavity. In a single 
cell cavity the transit time factor describes the effect of the sinusoidal 
variations of the accelerating field in the cavity as a function of time 
and space. It also includes the effect of a mismatch between the 
particle velocity and the cavity design beta, which causes a phase 
difference between beam and RF fields. In a multi-cell cavity the phase 
difference as a result of the beta-mismatch increases gradually, from 
cell to cell. Usually the transit time factor is given for the ideal 
condition, i.e. for the synchronous particle and therefore does not 
include the nominal phase difference between beam and RF used for 
gradient focusing as well as the beam phase errors from synchronous. 
It also doesn’t describe beam-loading effects.  

 
Shown below is the calculation of the transit time factor for a single 

cell cavity in the case in which the cavity-beta equals the beam-beta 
(βb=βc). The coordinate system for the calculation was chosen such 
that the center of the cell is at z=0. The spatial field distribution in the 
cell is described by a cosine function with nodes at the entrance and 
exit from the cell. The field is highest in z=0 at t=0 when the cosωRFt 
function peaks. As shown below the (normalized) transit time factor 
for the synchronous particle at speed c in a β=1 type cavity in the π-
mode is 0.5. That means that in the best case the particle sees an 
accelerating voltage of 0.5EmaxLc as it crosses the cell of length Lc, 
where Emax is the cavity peak electric field. 
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A similar derivation can be obtained for the more general case when 
the beam βb and cavity βc are different. Again the calculation is 
performed in only one cell: 
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The transit time function as calculated above, unfortunately cannot 
be implemented in a computer program because it generates a 
singularity for βc=βb instead of producing 0.5. A calculation using de 
L’Hopital’s rule would produce the expected value. In the S.C.R.E.A.M 
code, however, the cos-term was Taylor expanded to prevent this 
problem. First the cos term was transformed into a sin term to allow 
for a Taylor expansion around zero. This trick automatically yields 
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series terms canceling against the denominator, thus removing the 
singularity. 
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Figure 6-1 shows a comparison of T calculated with the approximation 
(A-3) and with the exact calculation using (A-2).  
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Figure 6-1: Ideal transit time factor for the synchronous particle of varying beta in single cell 
cavities with different betas: complete model (Eq. A-2) and polynomial approximation (Eq. A-3). 
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To use (A-3) in the calculation of T in the multi-cell cavity, it is 
necessary to prove that the phase difference, which appears after one 
cell (and accumulates from cell to cell) due to the β−mismatch, can be 
extracted from the transit-time-factor integral. Also, the procedure 
used in the program requires that the non-synchronous particle can be 
simulated on the basis of the transit time factor of the synchronous 
particle. That requires that the phase factor be extracted from the 
transit time factor integral at any stage of the calculation. The 
following repeats the above calculation, except that an additional 
phase factor ∆φ is introduced into the argument of the cosωt function. 
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The first integral above corresponds to the phase-free transit time 
factor as calculated above in (A-2). As will be shown below the second 
integral on the right is zero. 
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The first term above integrates to zero. The integral can be 
transformed with: 
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which includes the original integral. Thus the following transformation 
can be made: 
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The sin function integrates out to zero. Thus it can be concluded that: 
 

( ) ( )bcbc TT ββφφββ ,cos),,( ∆=∆        (A-5) 

 
To generalize the transit time factor to Nc cells the phase difference 

accumulated by a particle in the course of its travel from the middle of 
one cell to the middle of the next cell needs to be taken into account. 
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The above phase difference also takes into account that neighboring 
cells are generally operated with a phase difference of π (in the π-
mode). Furthermore, a convention needs to be made regarding the 
reference position, i.e. the location in the multi-cell cavity where the 
phase is arbitrarily set to zero. In S.C.R.E.A.M the reference point lies 
exactly in the middle of the cavity, coinciding with the middle of the 
middle cell for the case of an odd number of cells and in the middle 
between two center cells when the number of cells is even. 
 

Taking into account (A-5), the multi-cell transit time factor can be 
written as: 
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such that the calculation can be reduced to the solution of the sum on 
the right side since T(βc,βb) is known from (A-2). Since the transit time 
factor here is defined for the complete cavity (and it is multiplied with 
the average cavity field in subsequent stages of the program) it needs 
to be divided by the number of cells, Nc. The sum can be solved when 
transformed into a geometrical series. For that (and to simplify the re-
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arrangement of the sum terms) it is of advantage to switch to complex 
exponentials. 
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(A-8) can now be multiplied with (A-2) or (A-3) to give the total transit 
time factor: 
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The transit time factor according to (A-9) is the total transit time 
factor of the cavity and it assumes that the cavities operate in the π-
mode and that the cavity cell length corresponds exactly to half the RF 
wavelength. The second term which contains the multi-cell effect also 
has a singularity at βc=βb. This singularity needs to be addressed in the 
program.  
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Figure 6-2 is a plot of the multi-cell cavity transit factor. It clearly 
shows that the introduction of many cells strongly reduces the 
operational window in terms of beam beta. The single cell transit time 
factor can be reached only in the case βc=βb. 
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Figure 6-2: Ideal transit time factor for the synchronous particle of varying beta in 9-cell cavities 
with different betas according to equ. (A-9) The single cell transit time factor is shown as well 
(dashed lines). 

 
Note that the calculation of the transit time factor introduced above 

also supposes that the axial field profile in the cavity cell is sinusoidal. 
Especially in low beta cavities this is not necessarily the case. The 
program therefore uses a trick to take into account variations in the 
cavity designs across the range of betas. In the case of β=1 cavities 
the above assumptions regarding the cavity shape and a sinusoidal 
field profile hold. If normalized to one (dividing the above term by ½) 
for the case of βc=βb=1, the transit time factor can be applied also to 
the calculation of the total effective accelerating voltage per cavity in 
cavities of different designs if it is multiplied to the average 
accelerating voltage across the cell as calculated by electromagnetic 
design programs. With this approach the relative transit time factor is 
used to describe the effect of the mismatch between cavity β and 
beam β, while the information on the particular field profile is included 
in the average voltage (that a perfectly matched particle would see) as 
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obtained, for instance, from a FE model calculation of the particular 
cavity design.  
 

The gap-factor (Lc/λ - Lc the cell length, λ the RF wave-length) is not 
considered in Eq.(A-9) because it is implicit in the above calculation of 
the TTF (Lc/λ =1/2)).  
 

The total effective accelerating voltage seen by the particle in a cell 
of an accelerating cavity is then 

  

( ) ( ) ( ) ( )VdzzV
L

VNTVV
c

c
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2

1cos,,~
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where the transit time factor T~  is given by (A-9) (normalized by 
multiplication with 2), the average accelerating voltage V per cell is 
obtained from electromagnetic cavity design codes and φ is the relative 
phase of the particle to the phase of the synchronous particle. The 
normalized transit time factor, T~ , is calculated in the program input 
sheet. 
 

The program does not include dynamic effects such as: 
• the change of particle speed within a cavity 
• beam loading in the cavity 
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7 APPENDIX B 
 

DERIVATION OF THE CAVITY VOLTAGE 
 
Figure 6-3 shows the equivalent circuit of a driven cavity with beam 

Ib=beam current). The schematic indicates possible reflection by the 
reflective voltage Ur. The shunt impedance Rs (=RL) is also shown. 
The Kirchhoff-equations to solve for the circuit described in the figure 
are given next (B-1). The input parameters on the RF power generator 
side have been transformed to the cavity side. 
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Figure 6-3: Equivalent circuit of cavity operated with beam. 

 
Eq. (B-1) gives the voltage across the cavity, where RL is the sum of 

the coupling losses and the wall losses in the cavity. To obtain 
optimum coupling with beam, however, cavities need to be over-
coupled such that optimum matching occurs in the presence of beam. 
In the over-coupled case the coupling losses strongly dominate the 
wall losses: QL<<Q0, Rext>>R0. The loaded shunt impedance in the 

strongly over-coupled limit therefore is ( )Ω==≈ LLextL rQQ
Q
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With the half-width ω1/2 and resonance frequency ω0: 
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Eq. (B-1) can be rewritten: 
 



 S.C.R.E.A.M – program documentation 

 6-10

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=++ 221

2
021 22

s
VIIRVVV bfL

&&&&&
// ωωω                     (B-1)’ 

 
In Eq. (B-1)’ the additional assumption was made that the forward 
current is half the generator current. This factor takes into account the 
total reflection occurring at the cavity input when the cavity is not 
matched (which is typically the case when there is no beam). This 
factor 2 essentially takes into account that the voltage at the cavity 
entrance is two times the desired voltage, as a result of almost total 
reflection at the input. The almost negligible fraction of power that 
enters the unmatched cavity and fills it will ultimately establish this 
double voltage in the cavity.    
 
The voltage can be approximated with Eq. (B-3), as being composed of 
a high frequency component eiwt and an envelope component that 
slowly varies in time. Eq. (B-3) assumes a general cavity resonance 
frequency, ω, that could very well be different from ω0.     
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The same applies to the currents. Inserting the complex voltages into 

(B-1)’, and assuming 021 ~, / VV
)
&

)
&& ω  (the voltage varies only very slowly, 

the cavity bandwidth is very small) gives Eq. (B-4). (B-4) also 
assumes that the time derivatives of the current are zero. Strictly 
speaking this assumption is only valid in steady state, long after RF 
power was switched on.  
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Defining the detuning frequency ∆ω=ω0−ω and assuming ∆ω to be small, 
Eq. (B-4) becomes: 
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This can also be written in a more compact form, where the current 
term includes forward and beam current: 
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Eq. (B-5) is the basic equation describing the field changes in the 
cavity, which are slow compared to the RF field. The solution of Eq. (B-
5) is at the basis of the cavity voltage calculation used in S.C.R.E.A.M.    
 
The filling function, for instance, can be calculated from (B-5) setting 
the beam current to zero. Building a solution from the homogenous 
and inhomogeneous version of (B-5), one obtains 
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where the first term represents the to voltage to which the filling 
process tends asymptotically. In the case ∆ω=0, the ultimate voltage is 
Vend=2RLIf. This is the result of complete power reflection at the un-
matched cavity! Without detuning, the voltage rises exponentially with 
the filling time constant τ=1/ω1/2. In the case in which ∆ω≠0 the 
complex voltage performs rotations in phase-space, spiraling toward 
the end value 2RLIf(1-(∆ω/ ω1/2)2) which is always smaller than the 
ideal value. The detuning factor in the denominator, which describes 
the reactive component of the cavity impedance in the detuned case, 
is responsible for this.  
 
Instead of the forward current it is more practical to use the forward 
power. Forward current and power are related through: 
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when beam (Ib is present). 
 
Instead of solving Eq. B-5 with beam current, the program calculates 
the beam-loading separately. The voltage reduction, ∆V, in the cavity 
due to the bunch wakefield can be derived from an energy balance. 
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Eq. (B-8) assumes that the beam loading effect is small (∆V<<V0), 

so that O(∆V2) terms can be omitted and the V0q is approximately the 
energy taken out from the cavity by the beam. The bunch charge was 
replaced by q=Ib∆t in the final expression. The beam-loading 
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expression in Eq. (4-12) also includes the transit time factor T’ (<1), 
which actually reduces the cavity V0 as well as ∆V.  
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8 APPENDIX C 
 

Scream.m 
 
% SCREAM 
% SuperConducting RElativistic particle Accelerator siMulation 
% written 2003 by M. Huening (mhuening@fnal.gov) 
% version 0.1 
% 
 
if ~exist('debugging','var'), debugging=0;end 
 
LoadInput; 
PreRun; 
if debugging==1, return;end 
 
SimCav          = Cavities; 
SimCav.KLorentz = 
SimCav.KLorentz.*(1+SimCav.Kspread.*randn(size(SimCav.Kspread))); 
 
 
SimCav.dw       = SimCav.dw-2*pi*SimCav.Amplitude.^2.*(SimCav.KLorentz-
Cavities.KLorentz); 
[cavpre,bmpre]  = SimulateField(SimCav,Mod,Bunches,General,Phaseloop); 
if debugging==2, return;end 
 
save([datadirectory,'/preresults'],'prerun','cavpre','bmpre','Cavities'
,'Mod','Bunches','General'); 
if debugging==3, return;end 
 
block_cav_save_count=0; 
 
for kf=1:Nfiles 
  SimCav          = Cavities; 
  SimCav.KLorentz = 
SimCav.KLorentz.*(1+SimCav.Kspread.*randn(size(SimCav.Kspread))); 
  SimCav.dw       = SimCav.dw-
2*pi*SimCav.Amplitude.^2.*(SimCav.KLorentz-Cavities.KLorentz); 
  for kr=1:Nruns 
    
[cavresult(kr),beamresult(kr)]=SimulateField(SimCav,Mod,Bunches,General
,Phaseloop); 
  end 
   
save([datadirectory,'/beamresults',num2str(kf,'%03d')],'beamresult','Si
mCav'); 
  block_cav_save_count=block_cav_save_count+1; 
  if block_cav_save_count>block_cav_save, 
    save([datadirectory,'/cavresults',num2str(kf,'%03d')],'cavresult'); 
    block_cav_save_count=0; 
  end 
end 
 
cr=cavresult; 
br=beamresult; 
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LoadInput.m 
 
% Proton Driver Simulation Load Input File 
% Written by M. Huening 
% mhuening@fnal.gov 
% 
 
if ~exist('datadirectory','var'), datadirectory='run0data';end 
if ~exist('linacfile','var'), linacfile='linac.csv';end 
fid     = fopen([datadirectory,'/',linacfile],'r'); 
 
while 1, 
 
 tline = fgetl(fid); 
 % end of file reached 
 if tline==-1, break;end 
 % omit quotes 
 tline = tline(tline~='"'); 
 % parse arrays 
 if tline(1) == '{', 
     
    varname    = tline(2:min(find(tline==','))-1); 
   fieldnames = fgetl(fid); 
   % end of file reached 
   if fieldnames==-1,break;end 
   % no quotes but add ',' at the end (for easier analysis 
   fieldnames = [fieldnames(fieldnames~='"'),',']; 
   % discard comments 
   if any(fieldnames=='%') 
      fieldnames=fieldnames(1:min(find(fieldnames=='%'))-1); 
      end 
   % find the commas 
   commas=find(fieldnames==','); 
   % take only those who actually separate something 
   commas=commas(1:max(find(diff(commas)>1))+1); 
   lc=1; 
   fieldcell=cell(length(commas),1); 
   for kc=1:length(commas) 
     fieldcell{kc}=fieldnames(lc:commas(kc)-1); 
     lc=commas(kc)+1; 
     end 
   tline=fgetl(fid); 
   A=[]; 
   while (tline(1)~='}')&(tline~=-1), 
     A=[A;sscanf(tline,'%f,')']; 
     tline=fgetl(fid); 
     tline=tline(tline~='"'); 
     end 
   tmpstruct=struct('name',varname); 
   for kc=1:length(fieldcell) 
     tmpstruct=setfield(tmpstruct,fieldcell{kc},A(:,kc)); 
     end 
   eval([varname,'=tmpstruct;']); 
 else % execute command in tline 
   eval(tline); 
   end 
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 end; 
 fclose(fid); 
  
NMod =    max(Cavities.Module); 
NCav = length(Cavities.Module); 
 
%Mod=struct([]); Had to comment that out, otherwise it wouldn't run, PB 
0305 
for k=NMod:-1:1 
  Mod(k).Cavities = find(Cavities.Module(:)==k)'; 
  Mod(k).N        = length(Mod(k).Cavities); 
  Mod(k).Feedback = mean(Cavities.Feedback(Cavities.Module==k)); 
end 
 
if isfield(Cavities,'FillOff'), 
  for k=1:NMod 
    Mod(k).FillOff = mean(Cavities.FillOff(Mod(k).Cavities)); 
  end 
end 
 
if exist('Phaseloop','var'), 
  if isstruct(Phaseloop), 
     General.doPhaseloop=any(Phaseloop.Gain); 
   end 
else 
   Phaseloop=[]; 
   General.doPhaseloop=false; 
end; 
 
Cavities.Phase  = Cavities.Phase*pi/180; 
Cavities.Module = int32(Cavities.Module); 
 
 
Cavities.Feedback=Cavities.Feedback... 
  ./cellfun('length',{Mod(Cavities.Module).Cavities})'; 
 
if ~isfield(Cavities,'KLorentz'), 
  Cavities.KLorentz = -1*ones(size(Cavities.Frequency));end 
if ~isfield(Cavities,'Kspread'), 
  Cavities.Kspread = 0.1*ones(size(Cavities.Frequency));end 
if ~isfield(Cavities,'Atten'), 
  Cavities.Atten = ones(size(Cavities.Amplitude));end 
if ~isfield(Cavities,'FillOff'), 
  Cavities.FillOff = zeros(size(Cav.Amplitude));end 
if ~isfield(Cavities,'FillTau'), 
  Cavities.FillTau=Cavities.Qloaded./Cavities.Frequency/pi;end 
if ~isfield(Cavities,'FillTaylor'), 
  Cavities.FillTaylor = ones(size(Cavities.Amplitude));end 
if ~isfield(Cavities,'ReactiveAmp'), 
  Cavities.ReactiveAmp = zeros(size(Cavities.Amplitude));end 
if ~isfield(Cavities,'ReactivePhase'), 
  Cavities.Reactive = Cavities.ReactiveAmp; 
else 
  Cavities.Reactive = 
Cavities.ReactiveAmp.*exp(i*Cavities.ReactivePhase); 
end 
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if ~exist('block_cav_save','var'), 
  block_cav_save=0;end 
 

 
Prerun.m 
 
Pilot.Energy = Bunches.Energy(1); 
Pilot.Time = 0; 
Pilot.Mass = Bunches.Mass(1); 
Pilot.Charge = Bunches.Charge(1); 
Pilot.N=1; 
Pilot.I=1; 
 
ar=acceleration(Cavities,Pilot,Cavities.Amplitude); 
Cavities.Time    = ar.Time; 
Cavities.Egain   = diff([Pilot.Energy;ar.Energy(:)]); 
Cavities.TTF     = ar.TTF; 
 
prerun = acceleration(Cavities,Bunches,Cavities.Amplitude); 
 
prerun.dt = prerun.Time-prerun.Time(:,1)*ones(1,size(prerun.Time,2)); 
prerun.de = prerun.Energy-
prerun.Energy(:,1)*ones(1,size(prerun.Energy,2)); 
 
 
Acceleration.c 
 
#include <mex.h> 
#include <math.h> 
 
break 
const double MH_PI    = 3.1415296; 
const double MH_CVAC  = 2.9979e8; 
 
/* transit time factor */ 
double ttf(double beta, int n); 
 
double *Beta, *GapLambda, *NCells, *Mode; 
 
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray 
*prhs[]) 
{ 
  double *Position, *BeamTime, *Fieldr, *Fieldi; 
  double *PhSync, *Frequency; 
  double *Energy, *Time, *TTF; 
  double *Energy0,*Time0; 
  double *Mass, *Charge; 
 
  mxArray *FieldTmp; 
  mxArray *PhaseIn, *AmplIn, *EnergyIn, *TimeIn; 
  mxArray *EnergyField, *TimeField, *TTFField; 
 
  int M, N, MM, NN; 
  int Ncav, Nbunch, Nrun; 
  int k, ncav, nbunch; 
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  Position  = NULL; 
  BeamTime  = NULL; 
 
  Beta      = NULL; 
  GapLambda = NULL; 
  NCells    = NULL; 
  Mode      = NULL; 
 
  Energy    = NULL; 
  Time      = NULL; 
 
 
  if(nrhs !=3) 
    mexErrMsgTxt("Wrong number of inputs!"); 
  if(nlhs >1) 
    mexErrMsgTxt("Wrong number of outputs!"); 
  if(!mxIsStruct(prhs[0])) 
    mexErrMsgTxt("Input 0 has to be struct!"); 
  if(!mxIsStruct(prhs[1])) 
    mexErrMsgTxt("Input 1 has to be struct!"); 
 
  FieldTmp = mxGetField(prhs[0],0,"Position"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Position<<"); 
  M = mxGetM(FieldTmp); 
  N = mxGetN(FieldTmp); 
  Position = (double*)mxGetData(FieldTmp); 
 
  FieldTmp = mxGetField(prhs[0],0,"Time"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Time<<"); 
  if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N) 
    mexErrMsgTxt("All cavity sub fields must have equal size!"); 
  BeamTime = (double*)mxGetData(FieldTmp); 
 
  FieldTmp = mxGetField(prhs[0],0,"Frequency"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Frequency<<"); 
  if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N) 
    mexErrMsgTxt("All cavity sub fields must have equal size!"); 
  Frequency = (double*)mxGetData(FieldTmp); 
 
  FieldTmp = mxGetField(prhs[0],0,"Phase"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Phase<<"); 
  if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N) 
    mexErrMsgTxt("All cavity sub fields must have equal size!"); 
  PhSync   = (double*)mxGetData(FieldTmp); 
 
  FieldTmp = mxGetField(prhs[0],0,"Beta"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Beta<<"); 
  if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N) 
    mexErrMsgTxt("All cavity sub fields must have equal size!"); 
  Beta      = (double*)mxGetData(FieldTmp); 
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  FieldTmp = mxGetField(prhs[0],0,"GapLambda"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>GapLambda<<"); 
  if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N) 
    mexErrMsgTxt("All cavity sub fields must have equal size!"); 
  GapLambda = (double*)mxGetData(FieldTmp); 
 
  FieldTmp = mxGetField(prhs[0],0,"Cells"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Cells<<"); 
  if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N) 
    mexErrMsgTxt("All cavity sub fields must have equal size!"); 
  NCells    = (double*)mxGetData(FieldTmp); 
 
  FieldTmp = mxGetField(prhs[0],0,"Mode"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Mode<<"); 
  if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N) 
    mexErrMsgTxt("All cavity sub fields must have equal size!"); 
  Mode      = (double*)mxGetData(FieldTmp); 
 
  if(mxGetM(prhs[2])!=M||mxGetN(prhs[2])!=N) 
    mexErrMsgTxt("Field information must have same size as Cavity 
Fields!"); 
  Fieldr = mxGetPr(prhs[2]); 
  if(!mxIsComplex(prhs[2])) 
    Fieldi=mxGetPr(mxCreateDoubleMatrix(M,N,mxREAL)); 
  else 
    Fieldi = mxGetPi(prhs[2]); 
  if(!Fieldi) mexErrMsgTxt("Oops!"); 
 
  if(M>N){ 
    if(N>1) 
      mexErrMsgTxt("cavity data may only have one dimension"); 
    Ncav = M; 
  } 
  else{ 
    if(M>1) 
      mexErrMsgTxt("cavity data may only have one dimension"); 
    Ncav = N; 
  } 
 
  EnergyIn = mxGetField(prhs[1],0,"Energy"); 
  if(!EnergyIn) 
    mexErrMsgTxt("Error reading field >>Energy<<"); 
  MM = mxGetM(EnergyIn); 
  NN = mxGetN(EnergyIn); 
  Energy0 = (double*)mxGetData(EnergyIn); 
 
  TimeIn = mxGetField(prhs[1],0,"Time"); 
  if(!TimeIn) 
    mexErrMsgTxt("Error reading field >>Time<<"); 
  if(mxGetM(TimeIn)!=MM||mxGetN(TimeIn)!=NN) 
    mexErrMsgTxt("All bunch sub fields must have equal size!"); 
  Time0   = (double*)mxGetData(TimeIn); 
 
  FieldTmp = mxGetField(prhs[1],0,"Mass"); 
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  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Mass<<"); 
  if(mxGetM(FieldTmp)!=MM||mxGetN(FieldTmp)!=NN) 
    mexErrMsgTxt("All bunch sub fields must have equal size!"); 
  Mass    = (double*)mxGetData(FieldTmp); 
 
  FieldTmp = mxGetField(prhs[1],0,"Charge"); 
  if(!FieldTmp) 
    mexErrMsgTxt("Error reading field >>Charge<<"); 
  if(mxGetM(FieldTmp)!=MM||mxGetN(FieldTmp)!=NN) 
    mexErrMsgTxt("All bunch sub fields must have equal size!"); 
  Charge   = (double*)mxGetData(FieldTmp); 
 
  if(MM>NN){ 
    if(NN>1) 
      mexErrMsgTxt("bunch data may only have one dimension"); 
    Nbunch  = MM; 
  }else{ 
    if(MM>1) 
      mexErrMsgTxt("bunch data may only have one dimension"); 
    Nbunch  = NN; 
  } 
 
  EnergyField = mxCreateDoubleMatrix(Ncav,Nbunch,mxREAL); 
  TimeField   = mxCreateDoubleMatrix(Ncav,Nbunch,mxREAL); 
  TTFField    = mxCreateDoubleMatrix(Ncav,Nbunch,mxREAL); 
  Energy      = (double*)mxGetData(EnergyField); 
  Time        = (double*)mxGetData(TimeField); 
  TTF         = (double*)mxGetData(TTFField); 
 
  if(!Energy||!Time) 
    mexErrMsgTxt("Something went wrong."); 
 
  plhs[0] = mxCreateStructMatrix(1,1,0,NULL); 
  mxAddField(plhs[0],"Energy"); 
  mxSetFieldByNumber(plhs[0],0,0,EnergyField); 
  mxAddField(plhs[0],"Time"); 
  mxSetFieldByNumber(plhs[0],0,1,TimeField); 
  mxAddField(plhs[0],"TTF"); 
  mxSetFieldByNumber(plhs[0],0,2,TTFField); 
 
  for(nbunch=0;nbunch<Nbunch;nbunch++) 
    { 
      double ta, ea, pa, ba, ga ,ma, ph; 
      pa = 0;                  /* bunch position */ 
      ta = Time0[nbunch];      /* arrival time */ 
      ea = Energy0[nbunch];    /* actual energy */ 
      ma = Mass[nbunch];       /* particle mass */ 
      ga = 1+ea/ma;            /* gamma */ 
      ba = sqrt(1-1/ga/ga);    /* beta */ 
      for(ncav=0;ncav<Ncav;ncav++) 
 { 
   double de; 
   /* calculate arrival time */ 
   ta = ta+(Position[ncav]-pa)/ba/MH_CVAC; 
   pa = Position[ncav]; 
   Time[nbunch*Ncav+ncav] = ta; 



 S.C.R.E.A.M – program documentation 

 6-20

   /* convert into phase difference */ 
   if(BeamTime[ncav]<0) 
     ph = 0; 
   else 
     ph = 2*MH_PI*(BeamTime[ncav]-ta)*Frequency[ncav]; 
   /* calculate energy gain */ 
   TTF[nbunch*Ncav+ncav]=ttf(ba,ncav); 
   de = Charge[nbunch]*TTF[nbunch*Ncav+ncav] 
      *(Fieldr[ncav]*cos(PhSync[ncav]-ph) 
       -Fieldi[ncav]*sin(PhSync[ncav]-ph)); 
    
   ea = ea+de; 
   Energy[nbunch*Ncav+ncav] = ea; 
   ga = 1+ea/ma; 
   ba = sqrt(1-1/ga/ga); 
 } 
    } 
} 
 
 
 
double ttf(double beta, int n) 
{ 
  double x, y, yy, cells, gap; 
  y     = Beta[n]/(beta+1e-10); 
  yy    = MH_PI*(1-y)*GapLambda[n]; 
  gap   = (1-yy*yy/6+yy*yy*yy*yy/120)/(1+y)/GapLambda[n]; 
  x     = Mode[n]*(1-y); 
  cells = sin(NCells[n]*x/2)/(NCells[n]*sin(x/2)); 
  return gap*cells; 
} 
 
 
SimulateField.m 
 
 
function [cr,br,randstate] = 
SimulateField(Cav,Mod,Bunch,General,Phloop,randstate) 
 
if nargin>5, randn('state',randstate);end 
br.randstate = randn('state'); 
 
NFill  = General.Filltime/General.Stepsize; 
NBeam  = General.Beamtime/General.Stepsize; 
NStep  = NFill+NBeam;%+100; 
 
br.Eoff = randn*General.Ecoherent; 
br.Toff = randn*General.Tcoherent; 
br.Ioff = randn*General.Icoherent; 
br.Efluc = randn(NBeam,1)*General.Efluc; 
br.Tfluc = randn(NBeam,1)*General.Tfluc; 
br.Ifluc = randn(NBeam,1)*General.Ifluc; 
 
Bunch.Time   = Bunch.Time+br.Toff; 
Bunch.Energy = Bunch.Energy+br.Eoff; 
Bunch.I      = Bunch.I*(1+br.Ioff/100); 
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Bun = Bunch; 
 
dt  = General.Stepsize*1e-6; 
 
NCav   = length(Cav.Amplitude); 
NMod   = length(Mod); 
NBun   = length(Bun.N); 
 
cr.sh1    = zeros(NCav,NStep); 
cr.sh2    = zeros(NCav,NStep); 
cr.ps1    = zeros(NCav,NStep); 
cr.ps2    = zeros(NCav,NStep); 
 
 
cr.CField = zeros(NCav,NStep); 
cr.CForwd = zeros(NMod,NStep); 
cr.CFwdpl = ones(NCav,NStep); 
cr.CRvspl = zeros(NCav,NStep); 
cr.CDrive = zeros(NCav,NStep); 
 
 
cr.SField = zeros(NCav,NStep); 
cr.SForwd = zeros(NMod,NStep); 
 
cr.CCur   = zeros(NCav,NBeam); 
cr.ECur   = zeros(NCav,NBeam); 
 
br.Energy = zeros(NBun,NBeam); 
br.Time   = zeros(NBun,NBeam); 
 
if (nargin<5), Phloop=[];end 
if isempty(Phloop), 
  General.doPhaseloop=0; 
  PLIdx = []; 
else 
  General.doPhaseloop=1; 
  initphaseloop; 
end 
 
NPhl   = length(PLIdx); 
 
simbeam   = zeros(NCav,1); 
 
% Lorentz Detuning Constant (has some fluctuation to it) 
cr.K      = -abs(Cav.KLorentz); 
% Predetuning to compensate Lorentz Force 
dwpre     = Cav.dw;%-2*pi*Cav.Amplitude.^2.*(cr.K-Cav.KLorentz); 
% Where the Lorentz Force will be stored 
dwlor     = 0*dwpre; 
% Microphonics Coherent (0 Hz) 
dwmic0    = dwpre+2*pi*Cav.Microphonics.*randn(NCav,1); 
cr.w12    = pi*Cav.Frequency./Cav.Qloaded; 
cr.dw     = zeros(NCav,NStep); 
RL        = Cav.Qloaded.*Cav.Rshunt; 
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if ~isfield(Cav,'Attenuation'), 
  Cav.Attenuation = ones(size(Cav.Amplitude)); 
end 
Conversion     = sqrt(2*RL); 
Cav.Feedback   = Cav.Feedback./Conversion./Cav.Attenuation; 
 
for km = 1:size(cr.SField,1) 
  NOff=Cav.FillOff(km); 
  NTau=Cav.FillTau(km)/dt; 
  nTau=((0:(NFill-NOff)))/NTau; 
  cr.SField(km,1+NOff:NFill+1) = 1-exp(-nTau)+Cav.FillTaylor(km)*(nTau-
1+exp(-nTau)); 
  cr.SField(km,1+NOff:NFill+1) = 
cr.SField(km,1+NOff:NFill+1)/cr.SField(km,NFill+1)*Cav.Amplitude(km); 
  cr.SField(km,NFill+1:end) = Cav.Amplitude(km); 
end 
 
 
IFac = 2*pi*Cav.Rshunt.*Cav.Frequency.*exp(-i*Cav.Phase)*dt*1e-6; 
 
for km=1:length(Mod) 
  AIFac = mean(IFac(Mod(km).Cavities)... 
              ./(1-exp(-cr.w12(Mod(km).Cavities)*dt))... 
              ./Conversion(Mod(km).Cavities)); 
  cr.SForwd(km,NFill+1:NFill+NBeam) = AIFac*sum(Bunch.I); 
  cr.SForwd(km,1:NFill)             =    
mean(Cav.Amplitude(Mod(km).Cavities)./Conversion(Mod(km).Cavities))/2; 
  cr.Sforwd(km,1:Cav.FillOff(Mod(km).Cavities(1)))=0; 
end 
 
ct0 = Cav.Time*ones(size(Bun.N')); 
cf0 = Cav.Frequency*ones(size(Bun.N')); 
E0  = cumsum(Cav.Egain); 
 
 
 
for ks=1:(NFill+NBeam) 
  kb=ks-NFill; 
  cr.dw(:,ks) = dwmic0+dwlor+2*pi*Cav.FastMicrophonics.*randn(NCav,1); 
  if ks>NFill, 
    Bun.Time       = Bunch.Time+br.Tfluc(kb); 
    Bun.Energy     = Bunch.Energy+br.Efluc(kb); 
    Bun.I          = Bunch.I*(1+br.Ifluc(kb)/100); 
    ar             = acceleration(Cav,Bun,cr.CField(:,ks)); 
    cr.ECur(:,kb)  = (ar.Energy*Bun.N)/sum(Bun.N)-E0; 
    cr.CCur(:,kb)  = (exp(2i*pi*(ct0-ar.Time).*cf0).*ar.TTF)*Bun.I; 
    br.Energy(:,kb)= ar.Energy(end,:)'; 
    br.Time(:,kb)  = ar.Time(end,:)'; 
    simbeam        = IFac.*cr.CCur(:,kb); 
    end 
  if ks<(NFill+NBeam) 
     
    cr.CForwd(:,ks+0) = dimsum((cr.SField(:,ks)-
cr.CField(:,ks)).*Cav.Feedback,... 
                               Cav.Module,NMod)+cr.SForwd(:,ks); 
    % phase shifter and conversion to Ue 
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    Drive             = 
cr.CForwd(Cav.Module,ks).*cr.CFwdpl(:,ks).*Conversion.*Cav.Attenuation; 
    cr.CDrive(:,ks+1) = Drive+(cr.CField(:,ks)-
Drive).*cr.CRvspl(:,ks)./(1-cr.CRvspl(:,ks)); 
    % cavity dynamics 
    CP                = 2*cr.w12.*cr.CDrive(:,ks+1)./(cr.w12-
i*cr.dw(:,ks)); 
    cr.CField(:,ks+1) = (cr.CField(:,ks)-simbeam-CP).*exp(-(cr.w12-
i*cr.dw(:,ks))*dt)+CP; 
    % Lorentz-Force Detuning 
    dwlor  = detuning(cr.CField(:,ks),dwlor,dt,cr.K); 
    if General.doPhaseloop, 
      dophaseloop; 
      %dophaseloop_ideal; 
    end 
    %end of ks<NFill+NBeam 
  end 
  %end of for ks 
end 
 
if isfield(General,'Downsample'), 
  cr.CField = cr.CField(:,1:General.Downsample:end); 
  cr.SField = cr.SField(:,1:General.Downsample:end); 
  cr.CForwd = cr.CForwd(:,1:General.Downsample:end); 
  cr.SForwd = cr.SForwd(:,1:General.Downsample:end); 
  cr.CFwdpl = cr.CFwdpl(:,1:General.Downsample:end); 
  cr.CCur   = cr.CCur(:,1:General.Downsample:end); 
  cr.ECur   = cr.ECur(:,1:General.Downsample:end); 
  cr.dw     = cr.dw(:,1:General.Downsample:end); 
  end 
 
 
Detuning.m 
 
function dwn=detuning(field,dwo,dt,K); 
 
if nargin<4, K=-1.0;end 
tau=3e-4; 
 
dwn=dwo-dt./tau.*dwo+2*pi*dt./tau.*K.*abs(field).^2; 
 
 
Dimsum.c 
 
#include <mex.h> 
#include <math.h> 
 
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray 
*prhs[]) 
{ 
  int NMod, NCav, k; 
  double *IPr, *IPi; 
  double *SPr, *SPi; 
  int32_T *idx; 
  mxArray *FieldTmp; 
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  if(!mxIsInt32(prhs[1])) 
    mexErrMsgTxt("Index Values must be 32 Bit Integer!"); 
  idx = (int32_T*)mxGetData(prhs[1]); 
   
  NMod = (int)mxGetScalar(prhs[2]); 
  NCav = mxGetNumberOfElements(prhs[0]); 
 
  if(mxIsComplex(prhs[0])){ 
    FieldTmp = mxCreateDoubleMatrix(NMod,1,mxCOMPLEX); 
    SPr = mxGetPr(FieldTmp)-1; 
    SPi = mxGetPi(FieldTmp)-1; 
    IPr = mxGetPr(prhs[0]); 
    IPi = mxGetPi(prhs[0]); 
  }else{ 
    FieldTmp = mxCreateDoubleMatrix(NMod,1,mxREAL); 
    SPr = mxGetPr(FieldTmp)-1; 
    IPr = mxGetPr(prhs[0]); 
  } 
  plhs[0] = FieldTmp; 
 
  for(k=0;k<NCav;k++){ 
    SPr[idx[k]] = SPr[idx[k]]+IPr[k]; 
  } 
  if(mxIsComplex(prhs[0])) 
    for(k=0;k<NCav;k++){ 
      SPi[idx[k]] = SPi[idx[k]]+IPi[k]; 
    } 
} 
 

initphaseloop.m 
 
%Parameter initialization for differential/proportional phaseshifter 
  
PLIdx  = Phloop.CavNo; 
ALG    = Phloop.AmpGain; 
PLG    = Phloop.Gain; 
PLTau  = General.PhaseTau; 
ALD    = Phloop.AmpDGain; 
PLD    = Phloop.DGain; 
PLdel  = 0; 
  
PLSat  = pi/4; 
PLSatn = 1*2*PLSat/pi; 
PLIni  = 1*pi/4; 
PLsin  = sin(PLIni); 
PLIna  = cos(PLIni); 
ALSat  = 1.2; 
  
  
psh1 = 0; 
psh2 = 0; 
cr.sh1(PLIdx,1) = psh1; 
cr.sh2(PLIdx,1) = psh2; 
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dophaseloop.m 
 
%simulates proportional-differential phase-shifter 
  
afld = cr.SField(:,ks)-cr.CField(:,ks); 
mfld = dimsum(afld,Cav.Module,length(Mod))./[Mod(:).N]'; 
  
dfld = afld(PLIdx)-mfld(Cav.Module(PLIdx)); 
    
if ks==1 
   ofld = dfld; 
end; 
       
damp = real(dfld).*ALG+real(dfld-ofld).*ALD; 
dpha = imag(dfld).*PLG+imag(dfld-ofld).*PLD; 
  
dsh1 = PLSatn*atan((dpha+damp/PLsin)/PLSatn); 
dsh2 = PLSatn*atan((dpha-damp/PLsin)/PLSatn); 
psh1 = psh1+dsh1/PLTau; 
psh2 = psh2+dsh2/PLTau; 
cr.sh1(PLIdx,ks+1) = psh1; 
cr.sh2(PLIdx,ks+1) = psh2; 
       
if ks>PLdel, 
   cr.CFwdpl(PLIdx,ks+1)=... 
   (exp(i*(cr.sh1(PLIdx,ks-PLdel)-PLIni))+... 
    exp(i*(cr.sh2(PLIdx,ks-PLdel)+PLIni)))... 
    /PLIna/2; 
   cr.CRvspl(PLIdx,ks+1)=Cav.Reactive(PLIdx).*sin(psh1).*exp(i*psh2); 
end; 
       
ofld = dfld; 

 
 


